
An Experimental Study of Online Sheduling Algorithms �Susanne Albersy Biana Shr�oderzAbstratWe present the �rst omprehensive experimental study of online algorithms for Graham'ssheduling problem. Graham's sheduling problem is a fundamental problem in sheduling the-ory where a sequene of jobs has to be sheduled on m idential parallel mahines so as to minimizethe makespan. Graham gave an elegant algorithm that is (2� 1=m)-ompetitive. Reently a num-ber of new online algorithms were developed that ahieve ompetitive ratios around 1.9. Sineompetitive analysis an only apture the worst ase behavior of an algorithm a question oftenasked is: Are these new algorithms geared only towards a pathologial ase or do they performbetter in pratie, too?We address this question by analyzing the algorithms on various job sequenes. In our atualtests, we analyzed the algorithms (1) on real world jobs and (2) on jobs generated by probabilitydistributions. It turns out that the performane of the algorithms depends heavily on the hara-teristis of the respetive work load. On job sequenes that are generated by standard probabilitydistributions, Graham's strategy is learly the best. However, on the real world jobs the new algo-rithms often outperform Graham's strategy. Our experimental study on�rms theoretial resultsin the sense that there are also job sequenes in pratie on whih the new online algorithms per-form better. Our study an help to inform pratitioners about the new sheduling strategies as analternative to Graham's algorithm.1 IntrodutionDuring the last ten years online sheduling has reeived a lot of researh interest, see for instane [1,2, 18, 22, 23℄. In online sheduling, a sequene of jobs � = J1; J2; : : : ; Jn has to be sheduled on anumber of mahines. The jobs arrive one by one; whenever a new job arrives, it has to be dispathedimmediately to one of the mahines, without knowledge of any future jobs. The goal is to optimize agiven objetive funtion. Many online algorithms for various sheduling problems have been proposedand evaluated using ompetitive analysis. However, an experimental evaluation of the algorithms wasusually not presented. We remark here that there exist experimental studies for many shedulingstrategies used in parallel superomputers [11, 12℄. However, these are strategies for sheduling jobs�Important note: The �gures presented in this paper make heavily use of olor to distinguish between the perfor-mane of di�erent algorithms. We reommend to print the paper on a olor printer, if possible, or to preview it on aolor sreen.yInstitut f�ur Informatik, Albert-Ludwigs-Universit�at, Georges-K�ohler-Allee 79, 79110 Freiburg, Germany.salbers�informatik.uni-freiburg.de Part of this work was done while at the Max-Plank-Institut f�ur Informatik,Saarbr�uken, Germany.zComputer Siene Department, 5000 Forbes Avenue, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.biana�s.mu.edu 1



that an span more than one mahine, while in Graham's model eah job has to be assigned to exatlyone mahine. Savelsbergh et al. [19℄ reently gave an experimental analysis of o�ine approximationalgorithms for the problem of minimizing the weighted sum of ompletion times. Moreover, there areaverage-ase analyses and related experimental studies of bin paking problems, see e.g. [4, 6℄.In this paper we present an experimental study of algorithms for a fundamental problem in onlinesheduling. This problem is referred to as Graham's problem and has been investigated extensivelyfrom a theoretial point of view, see for instane [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 18, 21℄. In Graham'sproblem, a sequene of jobs � = J1; J2; : : : ; Jn has to be sheduled on m idential parallel mahines.Whenever a new job Jt, 1 � t � n, arrives, its proessing time pt is known in advane. Eah job has tobe assigned immediately on one of the mahines, without knowledge of any future jobs. The goal is tominimize the makespan, whih is the ompletion time of the job that �nishes last. This problem arisesfor instane in high performane and superomputing environments. Here, it is often the ase thateither preemption is not supported by the system or the high memory requirements of the jobs makepreemption prohibitively expensive. The runtimes of the jobs are known at least approximately sineusers are usually required to give an estimate for the CPU requirements of their jobs. The objetiveof minimizing the makespan in this setting aims at ahieving a high utilization on the mahines. Inaddition to its pratial relevane, Graham's problem is important beause it is the root of manyproblem variants where, for instane, preemption is allowed, preedene onstraints exist among jobs,or mahines run at di�erent speeds.In 1966 Graham gave an algorithm that is (2� 1=m)-ompetitive. Following [20℄ we all an onlinesheduling algorithm -ompetitive if, for all job sequenes � = J1; J2; : : : ; Jn, A(�) �  � OPT (�);where A(�) is the makespan of the shedule produed by A and OPT (�) is the makespan of anoptimal shedule for �. It was open for a long time whether an online algorithm an ahieve aompetitive ratio that is asymptotially smaller than 2, for all values of m. In the early ninetiesBartal et al. [2℄ presented an algorithm that is 1.986-ompetitive. Karger et al. [18℄ generalized thealgorithm and gave an upper bound of 1.945. Reently, Albers [1℄ presented an improved algorithmthat is 1.923-ompetitive. An interesting question is whether these new tehniques are geared onlytowards a pathologial worst ase or whether they also lead to better results in pratie. In this paperwe address this question and present the �rst omprehensive experimental study of online algorithmsfor Graham's sheduling problem.Desription of the experiments: We implemented the online algorithms by Graham, Bartalet al., Karger et al. and Albers and tested them on (1) real world job sequenes as well as on (2) jobsequenes generated by probability distributions. As for the real world jobs, we investigated datasets from three di�erent mahine on�gurations. The �rst data set onsists of job sequenes takenfrom the log �les of three MPP's (Massively Parallel Proessors) at three di�erent superomputingenters. The runtimes in the seond data set were extrated from a log �le of a 16 proessor vetormahine at the Pittsburgh Superomputing Center. This environment resembles very muh the modeldesribed above. The jobs in the third data set were obtained from a proess aounting on a SunUltra workstation. This workstation is one of the main omputing servers at the Max Plank Institutein Saarbr�uken. We believe that an analysis of the algorithms' performane on real job traes gives themost meaningful results. However, we also evaluated the algorithms under job sequenes generatedby probability distributions. More spei�ally, we generated job sequenes aording to the uniform,exponential, Erlang, hyperexponential and Bounded Pareto distributions.2



For eah job sequene and eah of the four algorithms, we determined the ratio online makespan/optimummakespan after eah sheduling step, i.e. whenever a new job was sheduled, the ratio was re-omputed.This allows us not only to ompare the algorithms against eah other but also gives us a measure forhow far away the online algorithms are from the optimal o�ine solution at any given point of time.Sine the problem of omputing an optimal solution for Graham's problem is NP-hard, at any time theoptimum makespan was approximated by a lower bound. Suppose that we have sheduled J1; : : : ; Jt.Clearly, a lower bound on the optimum makespan for the subsequene J1; : : : ; Jt is given by the max-imum of the following three expressions: (1) max1�s�t ps; (2) 1mPts=1 ps; (3) twie the size of the(m+1)-st largest job in J1; : : : ; Jt. It turns out that this lower bound is suÆient for a proper evalua-tion of the algorithms, i.e. we onsidered generalization of (3) but did not obtain any improved lowerbounds. Finally, we also onsidered the algorithms' performane for di�erent mahine numbers andevaluated settings with 10, 50, 100 and 500 mahines.Summary of the experimental results: The results di�er substantially depending on theworkload harateristis. In the experiments with real world jobs, the ratios online makespan/optimummakespan utuate. We observe sudden inreases and dereases, depending on the size of the last jobthat was sheduled. Whenever the proessing time of a new job is in the order of the average load onthe mahines, the ratio goes up, with values up to 1.8{1.9. Whenever the proessing time of a newjob is very large ompared to the average load on the mahines, the ratio drops and approahes 1.Only after a large number of jobs has been sheduled do the ratios stabilize. An important result ofthe experiments is that some of the new algorithms su�er muh less from these sudden inreases thanGraham's algorithm and therefore lead to a more preditable performane. They also often outperformGraham's algorithm. This makes the new algorithms also interesting from a pratial point of view.In the experiments with job sequenes generated by one of the standard probability distributions,the ratios online makespan/optimum makespan onverge quikly. Graham's algorithm outperformsthe other three algorithms and ahieves ratios lose to 1. The ratios of the algorithm by Bartal et al.and Albers are slightly higher and onverge to values between 1.2 and 1.3. The algorithm by Kargeret al. performs worse, with ratios between 1.7 and 1.9. Surprisingly, these results hold for all standardprobability distributions.Our experimental study on�rms and validates theoretial results in the sense that there are jobsequenes in pratie where the new online algorithms outperform Graham's strategy. Our study anhelp that pratitioners beome aware of the new strategies and possibly use them as an alternative toGraham's algorithm.Organization of the paper: In Setion 2 we desribe the online sheduling algorithms byGraham, Bartal et al., Karger et al. and Albers. In Setion 3 we give a detailed presentation of theexperiments with real world jobs. A desription of the tests with randomly generated jobs follows inSetion 4. While the results in Setion 3 and Setion 4 are limited to the 10 mahine ase we disussin Setion 5 the results for experiments with larger mahine numbers.2 The AlgorithmsIn this setion we desribe the online algorithms that we will analyze experimentally. An algorithm ispresented with a job sequene � = J1; J2; : : : ; Jn. Let pt denote the proessing time of Jt, 1 � t � n.At any time let the load of a mahine be the sum of the proessing times of the jobs already assigned3



to it. In the following, when desribing the algorithms, we assume that an algorithm has alreadysheduled the �rst t� 1 jobs J1; : : : ; Jt�1. We speify how the next job Jt is sheduled.Algorithm by Graham: Shedule Jt on the mahine with the smallest load.All the other algorithms maintain a list of the mahines sorted in non-dereasing order by urrentload. The goal is to always maintain some lightly loaded and some heavily loaded mahines. LetM t�1i denote the mahine with the i-th smallest load, 1 � i � m, after exatly t � 1 jobs have beensheduled. In partiular, M t�11 is the mahine with the smallest load and M t�1m is the mahine withthe largest load. We denote by lt�1i the load of mahine M t�1i , 1 � i � m. Note that the load lt�1mof the most loaded mahine is always equal to the urrent makespan. Let At�1i be the average loadon the i smallest mahines after t� 1 jobs have been sheduled. The algorithm by Bartal et al. keepsabout 44.5% of the mahines lightly loaded.Algorithm by Bartal et al.: Let k = [0:445m℄ be the integer losest to 0:445m and � = 1=70.Shedule Jt on M t�1k+1 if lt�1k+1 + pt � (2 � �)At�1k Otherwise shedule Jt on the mahine with thesmallest load.The algorithm by Karger et al. maintains a full stair-pattern.Algorithm by Karger et al.: Set � = 1:945. Shedule Jt on the mahine M t�1k with the largestload suh that lt�1k +pt � �At�1k�1. If there is no suh mahine, then shedule Jt on the mahine withthe smallest load.The algorithm by Albers keeps 50% of the mahines lightly loaded.Algorithm by Albers: Set  = 1:923, k = bm2  and j = 0:29m. Set � = (�1)k�j=2(�1)(m�k) . Let Ll be thesum of the loads on mahines M t1; : : : ;M tk if Jt is sheduled on the least loaded mahine. Similarly,let Lh be the sum of the loads on mahines M tk+1; : : : ;M tm if Jt is sheduled on the least loadedmahine. Let �tm be the makespan, i.e. the load of the most loaded mahine, if Jt is sheduled on themahine with the (k+1)-st smallest load. Reall that lt�1m is the makespan before the assignment ofJt. Shedule Jt on the least loaded mahine if one of the following onditions holds: (a) Ll � �Lh;(b) �tm > lt�1m and �tm >  � Ll+Lhm . Otherwise shedule Jt on the mahine with the (k+1)-st smallestload.3 Experiments with Real World JobsBefore we disuss the results of the experiments we desribe the experimental setup. The jobs usedin the experiments ome from three di�erent types of systems. The �rst data set onsists of jobtraes taken from MPP's (massively parallel proessors) and were obtained from Feitelson's ParallelWorkloads Arhive. It inludes a trae from a 512-node IBM-SP2 at Cornell Theory Center (CTC),a trae from a 100-node IBM-SP2 at the KTH in Sweden and a trae from a 128-node iPSC/860 atNASA Ames. The seond data set onsists of runtimes measured at the Pittsburgh SuperomputingCenter's Cray C90, whih is a vetor mahine. The jobs in the third data set were obtained froma proess aounting on a Sun Ultra workstation with two 200 MHz proessors and 1024 MB mainmemory. This workstation is one of the main omputing servers at the Max Plank Institute in4



Saarbr�uken. The following table summarizes the main harateristis of the workloads. These willbe ruial for the interpretation of the results.System Year Number Mean Size Min Max Squaredof Jobs (se) (se) (se) CoeÆientof VariationCTC IBM-SP2 1996 - 1997 57290 2903.6 1 43138 2.72KTH IBM-SP2 1996 - 1997 28490 8878.9 1 226709 5.48NASA Ames iPSC/860 1993 42050 348.20 1 62643 27.21PSC Cray C90 1997 54962 4562.6 1 2222749 43.16MPI Sun Ultra 1998 300000 2.3 0.01 47565.4 7550.58We split eah job trae into job sequenes ontaining 10000 jobs. We then ran the online algorithmson eah job sequene and reorded the ratio online makespan/optimum makespan after eah job. Themahine numbers used in these experiments range from 10 to 500. The next two setions desribe andanalyze the experimental results. In Setions 3.1 and 3.2 we �rst present the results for 10 mahines.The results for larger mahine numbers are summarized in Setion 5.3.1 The Experimental ResultsWe begin with the results for the MPP data. The development of the ratios under the job sequenesobtained from the CTC and the KTH traes was virtually idential. Figure 1 shows the typialdevelopment of the ratios of the online algorithms' makespans to the optimal makespans for these jobsequenes. We see that the ratios during the �rst 1000 jobs osillate between values of 1.1 and 1.7.
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Figure 1: Performane of the online algorithms on the KTH dataThe only exeption are the ratios for Karger's algorithms whih immediately approah a value of 1.8.After the �rst 1000 jobs the ratios of all algorithms stabilize. For Bartal's and Albers' algorithm theyonverge towards a value around 1.2 while the ratio for Graham's algorithm approahes 1. Figure 2shows the results for the NASA jobs. The general trend in the development of the ratios is similar tothat observed for the CTC and the KTH data. Initially, the ratios utuate until they �nally onvergeto the same values as for the CTC/KTH data. In ontrast to the results for the CTC and KTH jobs it5
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Figure 2: Performane of the online algorithm on the NASA datatakes muh longer until the ratios stabilize. Under the PSC data the ratios are even more volatile (seeFigure 3). Espeially, the ratio for Graham's algorithm is extremely instable and goes frequently up to
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Figure 3: Performane of the online algorithms on the PSC datavalues between 1.7 and 1.8. Bartal's algorithm, on the other hand, onverges very early to a ratio loseto 1.2. After around 9000 jobs have been sheduled the ratios approah the values that we observedfor the previous traes. The workstation data set is the only one where the results were di�erent forthe various job sequenes. They also di�er from the results we have observed so far. Figure 4 showstwo typial senarios for job sequenes extrated from the workstation trae. We see that the ratiosagain osillate in the beginning, but this time they don't onverge gradually to some value. Insteadthey drop very abruptly to 1 and don't hange after that. This sudden drop in the ratios an ourvery early as shown in Figure 4 (top) or later in the sheduling proess as in Figure 4 (bottom).6
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Figure 4: Typial results for experiments with workstation jobs3.2 Analysis of the ResultsTo interpret the experimental results it is helpful to understand in whih way a new job an a�et theratio online makespan/optimal makespan. Depending on its size ompared to the average load on themahines, a job an have one of the following three e�ets.1. If the size of an arriving job is small ompared to the average load on the mahines, the jobwill neither signi�antly a�et the optimum makespan nor the online makespans. Therefore, theratio online makespan/optimal makespan will remain almost unhanged.2. If the size of an arriving job is in the order of the average load on the mahines the ratio onlinemakespan/optimal makespan will inrease. The reason is that all algorithms have to maintaina ertain balane between the load on the mahines to prevent the makespan from growing toolarge. Therefore, they will have to assign the arriving job to a mahine that ontains already anamount of load lose to the average load. The optimal o�ine strategy would have been to reserveone mahine almost entirely for this job. Therefore, if the size of a new job is approximately that7



of the average load on the mahines, the ratio online makespan/optimal makespan will inreaseand in the worst ase approah 2.3. If the size of the new job is extremely large ompared to the average load on the mahines, thenew job will ompletely dominate the optimal makespan, as well as the makespan of an onlinealgorithm. This leads to almost the same makespan for the optimal and the online algorithm'ssolutions. As a result, the ratio online makespan/optimal makespan will approah 1.In the following we will refer to these three e�ets as e�et 1, 2, and 3, respetively. Note at this pointthat a sequene of small jobs (e�et 1) followed by a job triggering e�et 2 is the worst ase senariofor Graham's algorithm. This is beause Graham will distribute the small jobs ompletely evenly overthe mahines and therefore has to assign the \e�et 2 job" to a mahine that ontains already a lot ofload. All the other algorithms try to alleviate this problem by keeping some of the mahines lightlyloaded and hene reserving some spae for \e�et 2 jobs" that might arrive in the future.How likely the ourrene of eah of the three e�ets is and how pronouned the e�et will be,depends on the harateristis of the workload and the sheduling algorithm. If the variability in thejob sizes is low e�et 2 and 3 are very unlikely to our. The reason is that a low variability in thejob size distribution means that the jobs are relatively similar in size. Therefore, the probability thata new job has a size similar to that of all the jobs at one mahine ombined is very low. Lookingat the table with the harateristis of the traes we see that the CTC and the KTH traes havea very low squared oeÆient of variation, whih indiates a low variability in the job sizes. Thisexplains why the ratios onverged so quikly in the experiments with these traes: the low variabilityin the job sizes makes the arrival of an \e�et 2" or \e�et 3" job very unlikely. It also explains whythe performane of the three new algorithms is worse than that of Graham's algorithm (exept forthe �rst jobs). The new algorithms reserve some spae for large jobs that never arrive and thereforehave higher makespans. For the NASA and the PSC trae the squared oeÆient of variation ismuh higher than for the CTC and the KTH traes indiating a higher variability in the job sizes.Therefore, e�et 3 and in partiular e�et 2 are likely to happen, even after many jobs have beensheduled. This leads to the utuation of the online makespan/optimal makespan that we observedin Figure 2 and 3. We also see that in this ase the strategy of keeping some mahines lightly loadedan pay o�. The ratios for Bartal's algorithm, for instane, are in many ases muh lower than theratios of Graham's algorithm. Moreover, the ratio under Bartal's algorithm onverges quikly leadingto a more preditable performane than the heavily osillating ratio of Graham's algorithm. In theworkstation trae the variability is extremely high meaning that some jobs have a size that is extremelylarge ompared to that of an average job. Typially, in workstation traes the largest 1 perent of alljobs make up half of the total load (a property sometimes referred to as heavy-tailed property). Assoon as one of these extremely large jobs arrives, it ompletely dominates both the optimal and theonline makespan. This leads to the drop of the ratios to 1 that we see in Figure 4.To sum it up, the development of the ratios for our real world data depends almost exlusively onthe ourrenes of the large and partiularly the extremely large jobs. The most important quantityis the proportion of the large jobs to the average load on the mahines. Please note at this point, thatthe high variability that we observed in our traes is not a weirdness in these partiular traes. Theproperty that the largest jobs are extremely large ompared to the average size has been observed inmany systems and (as mentioned above) distributions like this are often alled heavy-tailed. See forexample [16℄ for more on heavy-tailed workloads. 8



4 Experiments with Jobs Generated by Probability DistributionsWe also analyzed the performane of the sheduling algorithms on job sequenes generated by the fol-lowing probability distributions: (a) the uniform distribution; (b) the exponential distribution; () theErlang distribution; (d) the hyperexponential distribution; and (e) the Bounded Pareto distribution.For a de�nition of these distributions, see e.g. [17, 24℄. When hoosing the parameters of the distribu-tions from whih the numbers where generated we tried on the one hand to over a great range and onthe other hand to use parameters similar to that in tests presented in [11℄ and [12℄. The distributionsommonly used to model servie times of omputer systems are the exponential, hyperexponentialand the Erlang distribution [17℄. For the sake of ompleteness we also inluded the uniform distribu-tion. The experimental results for these four standard distributions are disussed in Setion 4.1. TheBounded Pareto distribution is disussed in Setion4.2.4.1 The Standard DistributionsSurprisingly, the results did not di�er signi�antly for the various standard distributions. Even moresurprisingly, the results were similar for all parameters. Figure 5 shows the development of the ratioonline makespan/optimum makespan on 10 mahines for exponentially distributed job sizes, but alsorepresents the results for the other distributions quite well. We observe that the urves utuate to amuh smaller degree than under the real work loads. They onverge to the same values as in the aseof real job sequenes, but they do so muh faster. The reason is that the variability in the job sizesis muh lower for these distributions. The exponential distribution has a mean squared oeÆient ofvariation of 1 independently of its mean. The Erlang distribution and the uniform distribution alwayshave a squared oeÆient of variation less than or equal to 1, independently of how their parametersare hosen. For the hyperexponential distribution it is theoretially possible to hoose the parametersas to math the mean and the squared oeÆient of variation of any distribution. However, to ahievesquared oeÆients of variations as observed for the more variable real world traes one would haveto set the parameters to very extreme values.
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Figure 5: The performane of the algorithms with 10 mahines under an exponential workload.9



4.2 The Bounded Pareto DistributionIn ontrast to the standard distributions, the Bounded Pareto distribution an be easily �t to observeddata. We hose the parameters for this distribution so as to math the mean job sizes in the variousjob traes and to reate di�erent degrees of variability in the job sizes. It turned out that for a verylow variability the results were virtually idential to those for the CTC and the KTH data as shown inFigure 1. For medium variability the results looked very similar to those for the PSC data in Figure3. For extremely variable job sizes the results mathed those for the workstation traes (see Figure4). This on�rms our theory from Setion 3 that the variability in the job sizes is the ruial fatorfor the performane of the algorithms.5 Results for Larger Mahine NumbersAll results shown so far are for simulations with 10 mahines. We repeated all experiments for all jobsequenes with 50, 100 and 500 mahines, to study the e�et of larger mahine numbers.It turns out that the performane of the algorithms for larger mahine numbers and jobs generatedfrom standard distributions an be predited pretty well from their performane on 10 mahines. Thedevelopment of the ratios for large mahine numbers is similar to that in the 10 mahine ase in thatthe ratios �nally onverge to similar values. Figure 6 shows the ratios for the experimental resultswith 500 mahines on the same job sequene used for the 10 mahine experiment plotted in Figure5. Graham's performane ratio gets lose to 1 while Karger's ratio of approximately 1.9 is by far the
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Figure 6: The performane of the algorithms under an exponential workload and 500 mahinesworst. The urves of the algorithms by Albers and Bartal et al. are quite similar lying between 1.2 and1.3 with an advantage for Albers' algorithm that grows as the number of jobs gets larger. However,it is notieable that for larger mahine numbers the onvergene of the ratios is muh slower, sine ittakes more jobs to \�ll" all the mahines and reah shedules whose makespan is stable with respetto ompetitiveness. 10



If we, however, look at job sequenes with length proportional to the number of mahines theurves look very similar even for di�erent mahine numbers. Figure 7 shows the development of theratios for the 10 mahine experiment for only the �rst 200 jobs. These urves resemble very muh thosefor 500 mahines and 10000 jobs shown in Figure 6. For the Bounded Pareto distribution, dependingon the hosen parameters, we observe the same results as in the ase of the standard distributions orthe real world data presented below.
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Figure 7: The performane of the algorithms under an exponential workload and 10 mahines for the�rst 200 jobsFor the job sequenes taken from the real world data the results don't sale in the above sense.Reall that these job sequenes exhibit a higher variability in the job sizes and that the results mainlydepend on how strong the e�ets of medium and very big jobs are. The important observation in theexperiments with these sequenes and larger mahine numbers is that the more mahines we use thesmaller is the inuene of e�et 2. Sine the average load on the mahines grows more slowly for along time the medium jobs ause e�et 3 rather than e�et 2. By the time the average load on themahines is on the order that makes e�et 2 more likely there is with high probability already one ofthe extremely large jobs on the mahines that dominates the makespan. As a result the ratios of themakespans for all algorithms are muh lower for larger mahine numbers. Figure 8 shows the resultsfor 100 mahines on the same workstation job sequene that was used for the 10 mahine experimentin Figure 4 (top). The urve of Graham's algorithm is idential to that of Albers.6 ConlusionWe saw that the performane of sheduling algorithms depends heavily on the workload harateristis.For workloads with a low variability the simple greedy algorithm by Graham has the best performane.For highly variable real workloads, however, the new algorithms often outperform Graham's algorithm.Our results also show the importane of hoosing the right workload when evaluating shedulingalgorithms experimentally. In partiular, we observed that standard probability distributions do notoften apture important harateristis of real workloads very well.11
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