On the Influence of Lookahead in Competitive

Paging Algorithms
Susanne Albers*

Abstract

We introduce a new model of lookahead for on-line paging algorithms and study several
algorithms using this model. A paging algorithm is on-line with strong lookahead ! if it sees
the present request and a sequence of future requests that contains [pairwise distinct pages.
We show that strong lookahead has practical as well as theoretical importance and improves
the competitive factors of on-line paging algorithms. This is the first model of lookahead
having such properties. In addition to lower bounds we present a number of deterministic
and randomized on-line paging algorithms with strong lookahead which are optimal or nearly

optimal.

Keywords: On-Line Algorithms, Paging, Lookahead, Competitive Analysis.

1 Introduction

In recent years, the competitive analysis of on-line algorithms has received much attention.
Among on-line problems, the paging problem is of fundamental interest. Consider a two-level
memory system which has a fast memory that can store k pages and a slow memory that can
manage, basically, an unbounded number of pages. A sequence of requests to pages in the
memory system must be served by a paging algorithm. A request is served if the corresponding
page is in fast memory. If the requested page is not stored in fast memory, a page fault occurs.
Then a page must be evicted from fast memory so that the requested page can be loaded into
the vacated location. A paging algorithm specifies which page to evict on a fault. The cost
incurred by a paging algorithm equals the number of page faults. A paging algorithm is on-line

if it determines which page to evict on a fault without knowledge of future requests.

We analyze the performance of on-line paging algorithms using competitive analysis [14, 10].
In a competitive analysis, the cost incurred by an on-line algorithm is compared to the cost
incurred by an optimal off-line algorithm. An optimal off-line algorithm knows the entire request

sequence in advance and can serve it with minimum cost. Let C4(0) and Copr(0) be the cost

*Address: Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. FEmail:
albers@mpi-sb.mpg.de. This work was done while the author was a student at the Graduiertenkolleg Informatik,

Universitat des Saarlandes, and was supported by a graduate fellowship of the Deutsche Forschungsgemeinschaft.

of the on-line algorithm A and the optimal off-line algorithm OPT on request sequence o. Then

the algorithm A is c-competitive, if there exists a constant a such that
Calo) <c-Copr(o)+a

for all request sequences o. The competitive factor of A is the infimum of all ¢ such that A is
c-competitive. If A is a randomized algorithm, then C4(c¢) is the expected cost incurred by A on
request sequence o. In this paper we evaluate the performance of randomized on-line algorithms
only against the oblivious adversary (see [3] for details). An optimal off-line paging algorithm
has been exhibited by Belady [2]. The algorithm is also called the MIN algorithm. On a fault,

MIN evicts the page whose next request occurs farthest in the future.

The paging problem (without lookahead) has been studied intensively. Sleator and Tarjan
[14] have demonstrated that the well-known replacement algorithms LRU (Least Recently Used)
and FIFO (First-In First-Out) are k-competitive. On a fault LRU removes the page that was
requested least recently, and FIFO evicts the page that has been in fast memory longest. Sleator
and Tarjan have also proved that no on-line paging algorithm can be better than k-competitive;
hence LRU and FIFO achieve the best competitive factor. Fiat et al. [5] have shown that no
randomized on-line paging algorithm can be better than H (k)-competitive against an oblivious
adversary. Here H(k) = Sk 1/i denotes the kth harmonic number. They have also given a
simple replacement algorithm, called the MARKING algorithm, which is 2H (k)-competitive.
McGeoch and Sleator [11] have proposed a more complicated randomized paging algorithm

which achieves a competitive factor of H (k).

In this paper we study the problem of lookahead in on-line paging algorithms. An impor-
tant question is, what improvement can be achieved in terms of competitiveness, if an on-line
algorithm knows not only the present request to be served, but also some future requests. This
issue is fundamental from the practical as well as the theoretical point of view. In paging sys-
tems some requests usually wait in line to be processed by a paging algorithm. One reason
is that requests do not necessarily arrive one after the other, but rather in blocks of possibly
variable size. Furthermore, if several processes run on a computer, it is likely that some of them
incur page faults which then wait for service. Many memory systems are also equipped with
prefetching mechanisms, i.e., on a request not only the currently accessed page but also some
related pages which are expected to be asked next are demanded to be in fast memory. Thus
each request generates a number of additional requests. In fact, some paging algorithms used
in practice make use of lookahead [15]. In the theoretical context a natural question is: What

is it worth to know a part of the future?

Previous research on lookahead in on-line algorithms has mostly addressed dynamic location
problems and on-line graph problems [4, 9, 7, 6, 8]; only very little is known in the area of
competitive paging with lookahead. Consider the intuitive model of lookahead, which we call
weak lookahead. Let | > 1 be an integer. We say that an on-line paging algorithm has a weak

lookahead of size | if it sees the present request to be served and the next [future requests. It

is well known that this model cannot improve the competitive factors of on-line paging algo-
rithms. If an on-line paging algorithm has a weak lookahead of size [, then an adversary that
constructs a request sequence can simply replicate each request [times in order to make the
lookahead useless. The only other result known on competitive paging with lookahead has been
developed by Young [17]. According to Young, a paging algorithm is on-line with a resource-
bounded lookahead of size | if it sees the present request and the maximal sequence of future
requests for which it will incur [faults. Young presents deterministic and randomized on-line
paging algorithms with resource-bounded lookahead ! which are max{2k/l, 2}-competitive and
2(In(k/1) 4+ 1)-competitive, respectively. However, the model of resource-bounded lookahead is
unrealistic in practice. A subsequence on which an algorithm incurs [faults can be very long.
Moreover, the sequence of future requests to be seen by an on-line algorithm depends on the

algorithm’s behavior on past requests.

We now introduce a new model of lookahead which has practical as well as theoretical
importance. As we shall see, this model can improve the competitive factors of on-line paging
algorithms. Let 0 = 0(1),0(2),...,0(m) be a request sequence of length m. o(t) denotes the
request at time t. For a given set S, card(S) denotes the cardinality of S. Let [> 1 be an

integer.

Strong lookahead of size [: The on-line algorithm sees the present request and a sequence of
future requests. This sequence contains [pairwise distinct pages which also differ from the page
requested by the present request. More precisely, when serving request o (t), the algorithm knows
requests o(t+1),0(t+2),...,0(t'), where t’ = min{s > t|card({o(t),o(t+1),...,0(s)}) = [+1}.

The requests o(s), with s > #' + 1, are not seen by the on-line algorithm at time t.

Strong lookahead is motivated by an analysis of request sequences that occur in practice:
Subsequences of consecutive requests generally contain a number of distinct pages. This observa-
tion is supported by simulations that we have done using the ATM address traces by Agarwal et
al. [1]. From a theoretical point of view we require an adversary to reveal some really significant
information on future requests. Although an adversary may replicate requests in the lookahead,

an on-line algorithm is provided with relevant information about the future.

In the following, we always assume that an on-line algorithm has a strong lookahead of
fixed size [> 1. If a request sequence ¢ = ¢(1),0(2),...,0(m) is given, then for all ¢ > 1 we
define a value A(t). If card({o(t),o(t+1),...,0(m)}) < I+ 1 then let A(t) = m; otherwise
let A(t) = min{t’ > t|card({o(t),o(t+1),...,0(t)}) =1+ 1}. The lookahead L(t) at time t is
defined as

L(t)y=A{c(s)|ls=t,t+1,...,A(t)}.
We say that a page x is in the lookahead at time t if x € L(t).

The remainder of this paper is an in-depth study of paging with strong lookahead. Strong
lookahead is the first realistic model of lookahead that also reduces the competitive factors of
on-line paging algorithms. In Section 2 we consider deterministic on-line algorithms and present

a variant of the algorithm LRU that, given a strong lookahead of size I, where [< k — 2,

achieves a competitive factor of (k —). We also show that no deterministic on-line paging
algorithm with strong lookahead I, I < k — 2, can be better than (k — [)-competitive. Thus our
proposed algorithm is optimal. Furthermore, we give another variant of the algorithm LRU with
strong lookahead [which is (k — 1+ 1)-competitive and hence almost optimal. Interestingly, this
algorithm does not exploit full lookahead but rather serves the request sequence in a series of
blocks. Thus the algorithm takes into account that in practice, requests often arrive in blocks.
Section 3 addresses randomized on-line paging algorithms with strong lookahead. We prove that
a modification of the MARKING algorithm with strong lookahead I, I < k — 2, is 2H (k — [)-
competitive. This competitiveness is within a factor of 2 of optimal. In particular, we show that
no randomized on-line paging algorithm with strong lookahead [, I < k — 2, can be better than
H (k — l)-competitive. Furthermore we present an extremely simple randomized on-line paging

algorithm with strong lookahead [, which is (k — [+ 1)-competitive.

2 Deterministic paging with strong lookahead

Unless otherwise stated, we assume in the following that all our paging algorithms are lazy

algorithms, i.e., they only evict a page on a fault.

Let k > 3. We consider the important case that an on-line paging algorithm has a strong
lookahead of size [< k — 2. The on-line paging algorithms we present are extensions of the

algorithm LRU to our model of strong lookahead.

Algorithm LRU(/): On a fault execute the following steps. Among the pages in fast memory
which are not contained in the present lookahead, determine the page whose last request occurred

least recently. Evict this page and load the requested page.
Theorem 1 Let! < k—2. The algorithm LRU(l) with strong lookahead [is (k —1)-competitive.

Now we prove this theorem. Let 0 = (1), 0(2),...,0(m) be a request sequence of length m.
We assume without loss of generality that LRU(/) and OPT start with an empty fast memory
and that on the first & faults, both LRU(/) and OPT load the requested page into the fast
memory. Furthermore we assume that o contains at least [4+ 1 distinct pages. The following
proof consists of three main parts. First, we introduce the potential function we use to analyze
LRU(!). In the second part, we partition the request sequence o into a series of phases and then,

in the third part, we bound LRU(I)’s amortized cost using that partition.

1. The potential function
We introduce some basic notations. Fort =1,2,..., A(1)—1,let p(¢t) = 1 and for t = A(1), A(1)+
1,...,m, let

w(t) = max{t' < t|card({c(t'),oc(t' +1),...,0(t)}) =1+ 1}.
For ¢ > A(1), p(t) is the most recent point of time such that the subsequence o (u(t)), o(u(t) +
1),...,0(t) contains [+ 1 distinct pages. Define

M(t) = {o(s)|s = pu(t), ult) + 1,1},

For a given time ¢, the set M (¢) contains the last [4+ 1 requested pages.

Fort =1,2,...,m,let Sprp;)(t) be the set of pages contained in LRU(/)’s fast memory after
request ¢, and let Sopr(t) be the set of pages contained in OPT’s fast memory after request
t. Spro@(0) and Sopr(0) denote the sets of pages which are initially in fast memory, i.e.,
Srru@)(0) = Sopr(0) = 0. For the analysis of the algorithm we assign weights to all pages.
These weights are updated after each request. Let w(z,t) denote the weight of page x after
request t, 1 <t < m. The weights are set as follows. If @ € Sygrp()(t) or @ € L(t), then

w(z,t) =0.
Let j = card(Sprua)(t) \ L(t)). Assign integer weights from the range [1,] to the pages in
Spro@y(t) \ L(t) such that any two pages z,y € Spry)(t) \ L(t) satisfy
w(z,t) < w(y,t)
iff the last request to & occurred earlier than the last request to . For t = 1,2,...,m, let
S(t) = Srrua () \{M(t) UL(t) U Sopr(t)}.

We now define the potential function:

o(t) = Z w(z,t).
z€S(t)
Intuitively, Spru)(t) \ Sopr(t) contains those pages which cause LRU(/) to have a higher
cost than OPT. Instead of the pages © € Sprp)(t) \ Sopr(t), OPT can store pages in its
fast memory which are not contained in SLRU(I)(t) but are requested in the future. Pages in
Srru@)(t) \ Sopr(t) which are contained in L(t) U M(t) do not contribute to ®(t). A page z in
Sproy(t) \ Sopr(t) with @ € L(t) cannot increase LRU(I)’s cost because z is requested in the
near future. By neglecting the pages in M (t) we can establish the property that each page can
only cause an increase in potential of at most & — [— 1, cf. Lemma 2. The weight w(z,?) of a

page x € S(t) equals the number of faults that LRU(I) must incur before it can evict z.

2. The partitioning of the request sequence

We will partition the request sequence ¢ into phases, numbered from 0 to p for some p, such
that phase 0 contains at most [+ 1 distinct pages and phase 7, 2 = 1,2, ..., p, has the following
two properties. Let t? and t7 denote the beginning and the end of phase 7, respectively.

Property 1: Phase ¢ contains exactly [+ 1 distinct pages, i.e.,
card({o(t?), ot +1),...,0(t)}) =1+ 1.
Property 2: For all « € Spru(t5_) \ {L(t}) U Sopr(ti_1)},
w(z,tf) <k-1-2.

Property 2 will be crucial when bounding LRU(I)’s amortized cost.

In the following, we describe how to decompose 0. We assume that LRU(/) and OPT have
already served o. We partition the request sequence starting at the end of ¢. Suppose that we
have already constructed phases P(i+ 1), P(i + 2),..., P(p). We show how to generate phase
P(i). Let t{ =t , —1. (Welet t5 = m at the beginning of the decomposition.) Now set t = ju(t5)
and compute Spryy(t — 1) \ L(t). If Spruy(t — 1) \ L(t) # 0, then let y be the most recently
requested page in Spry)(t — 1) \ L(t). We consider two cases. If Sprpygy(t — 1)\ L(t) = 0
or if Spppy(t — 1)\ L(t) # 0 and y € Sopr(t — 1), then let 7 = ¢ and call the i-th phase
P(i) = a(t?),0(t? + 1),...,0(t5) a type 1 phase. Otherwise (if Spru@(® — 1)\ L(t) # 0 and
y & Sopr(t— 1)) let t', ¢/ < t, be the time when OPT evicted page y most recently. Let t? = ¢/
and call the i-th phase P(i) = o(t%), 0 (t?+ 1), ..., 0(t5) a type 2 phase. The detailed algorithm

is given below.

1. ©1:=m;
2. 5 i=my
3. repeat
4. t=pE);
5. if SLRU(I)(t —1)\L(t) # () then
6. Let y be the most recently requested page in Spry)(t — 1)\ L(t);
7. endif;
8. if (Spro@y(t =1\ L(t) =0) or (Spro@y(t — 1)\ L(t) # 0 and y € Sopr(t — 1)) then
9. Let t* =t and let P(i) = o(t?),0(t? + 1),...,0(t5) be the i-th phase;
10. Call P(¢) a type 1 phase;
11. else
12. Determine the largest ¢’ < t, such that OPT evicts page y at time t/;
13. Let t* = ¢ and let P(i) = o(t%),a(t? +1),...,a(t) be the i-th phase;
14. Call P(¢) a type 2 phase;
15. endif;
16. vi=1— 1
17, 5 =tb 1
18. until § = 0;
19. Number the phases from 0 to p;

Lemma 1 The partition generated above satisfies the following conditions.

a) Phase P(0) contains at most | + 1 distinct pages.
b) Every phase P(i), 1 <i < p, has Property 1 and Property 2.

Proof: First we prove part a). We show that P(0) is a type 1 phase. This immediately implies
that P(0) contains at most [+ 1 pages. If P(0) was a type 2 phase, then OPT would evict a
page on the first request o(1). However, this is impossible because initially the fast memories
are empty and on the first k£ faults both LRU(/) and OPT load the requested page into the fast

Iemory.

Now we prove part b) of the lemma. Consider an arbitrary phase P(i), 1 < ¢ < p. Let
t = p(ts). If Spruey(t — 1)\ L(t) # 0, then let y be the most recently requested page in
Srru@)(t —1)\ L(t) and let ¢, " < ¢, be the time when y was requested most recently. If P(i)
is a type 2 phase, then let ¢/, ¢/ <t — 1, be the time when OPT evicted y most recently. (Since
y ¢ Sopr(t—1), we have t’/ <t/ <t —1.)

We show that P(¢) contains exactly [+ 1 pages. For a type 1 phase there is nothing to show.
Suppose P(i) is a type 2 phase. Then t? = /. Let s € [t/,t— 1] be arbitrary and let @ be the page
requested at time s. We need to show that is requested in the interval [t,¢{], i.e., that € L(¢).
So assume x ¢ L(t). Then by the definition of y, x ¢ Spry)(t—1), i.e., z was evicted by LRU(J)
at some time s’ € [s+1,t—1]. Since y was not evicted by LRU(/) at time s’ and y’s most recent
request was at time t” < s, we must have y € L(s') C {a(s),...,0(t —1),0(t),...,0(t5)} =
{o(s),...,0(t—1)JUL(t). But y & {o(s'),...,0(t = 1)} and y ¢ L(t), by the definition of "
and y. Thus o ¢ L(t) is impossible. We conclude that P(¢) contains exactly [+ 1 distinct pages.

It remains to prove that P(7) has Property 2. Consider an arbitrary page * € Spry)(t5_1) \
{L(#%) U Sopr(ts_)}. If w(z,tf) = 0, then the property clearly holds. Therefore assume
w(z,t$) > 1. By Property 1, L(t%) contains all pages which are requested in P(i). Since
w(z,t§) > 1, we have @ € Sppu)(tS) \ L(t5) and hence © ¢ L(t?) U L(tf) 2 L(s) for all
s € [t*,t¢]. Thus, was a candidate for eviction by LRU(I) throughout P(i), but was not
evicted. This implies immediately that all pages requested in P(i), i.e. all pages in L(t?), also
belong to Srrr(t5)-

We next show that y € Spppy(tf). If P(i) has type 1, then y € Sopr(t{_;) and hence
y # z. Furthermore, y was requested more recently than x. Since z was not evicted by LRU(!)
during P(i), we conclude y € Spryp(t). If P(i) has type 2, then y was evicted by OPT at tb
and hence y € Sopr(tS_,). This implies y # . Also, by the definition of y, y ¢ L(t) = L(t?).
Since y was requested more recently than z, it follows, as above, y € SLRU(l)(tf)- We conclude
Lt u{y} C Sproy(t5) and hence we have identified [+ 2 pages in Sppp(r)(t5) which, at time
t¢, were requested later than z. At time ¢, each of these pages has a weight of 0 or a weight
which is greater than that of . Thus, w(z,t5) <k —-1-2. O

In the remainder of this proof it is not important how the partition of ¢ is constructed. We

only use the fact that we have a partition satisfying Property 1 and Property 2.

3. Bounding LRU(/)’s amortized cost
Using the partition of o generated above, we will evaluate LRU(!)’s amortized cost on o. First
we will bound the increase in potential > ;2 ®(t) — ®(t — 1). Then we will estimate LRU(I)’s

actual cost in each phase of . Fort =1,2,...,m, let
N(@t)y=S@)\S(t—-1).

We set M(0) = L(0) = § and S(0) = Spryy(0) \ {M(0) U L(0) U Sopr(0)}, which is used in
the definition of N (1) = S(1)\ S(0).

We present two lemmas which are crucial in analyzing the change in potential ®(t) —®(t—1),
1 <t < m. Note that

() —S(t-1) = Z w(z,t) — Z w(z,t—1)

z€S(t) z€S(t—1)
= Z w(z,t) + Z (w(z,t) —w(z,t—1)) — Z w(z,t—1).
zeN(1) 2€S(t—1)nS(t) c€S(t—1)\S(t)

Lemma 2 Let1 <t <m. Ifx € N(t), then w(x,t) <k —-1-1.

Proof: By the definition of N(t), we have x € Sppp)(t) \ {M(t) U L(t) U Sopr(t)}. Since
x ¢ M(t), page z is not requested in the interval [u(t),t] and hence x € Sprpyp(p(t) —1). We
have = ¢ M(t) U L(t) which implies « ¢ L(s) for all s with p(t) < s < ¢t. Thus, z has been a
candidate for eviction by LRU(!) throughout the interval [x(t),], but was not evicted. It follows
that all pages in M (t) must be in Spry()(t). Note that M (t) contains [+ 1 pages because OPT
does not evict a page before the (k + 1)-st fault. At time ¢, all pages in M (¢) have a weight of
0 or a weight which is greater than w(z,t). Thus w(z,t) < k-1-1. O

Lemma 3 Let1 <t <mandz € S(t—1)NS(t). Then x’s weight satisfies w(x,t—1) > w(z,t).
In particular, if LRU(1) incurs a fault at time t, then w(z,t — 1) > w(x,t).

Proof: First we show w(z,t — 1) > w(xz,t). Note that by the definition of S(¢t — 1) and S(t),
we have v € Sppy@)(t — 1)\ L(t — 1) and = € Sppp@(t) \ L(t). Hence w(z,t —1) > 1 and
w(z,t) > 1. In order to show w(x,t —1) > w(a,t), it suffices to prove the following statements.
1) Let y, y # z, be a page which satisfies w(y,t — 1) = 0 and w(y,t) > 0. Then w(x,t) <
w(y,t).

2) Let y, y # x, be a page which satisfies w(y,t —1) > 0 and w(z,t — 1) < w(y,t —1). Then
w(y,t) =0 or w(x,t) < w(y,t).

We prove these statements. If a page y satisfies w(y,t — 1) = 0 and w(y,t) > 0, then y must
be requested at time ¢ — 1 (and evicted by OPT at time ¢). Thus, at time ¢, y has the highest
weight among all pages in Sprpy(t) \ L(t). Hence w(x,t) < w(y,t). Suppose a page y satisfies
w(y,t—1)>0and 1 <w(z,t—1) < w(y,t—1). This implies that at time ¢ — 1, ’s most recent
request is longer ago than y’s most recent request. We conclude that this statement must also
hold at time t because x is not requested at time ¢. Thus, if w(y,t) > 0, then w(z,t) < w(y,t).
This completes the proof that w(z,t — 1) > w(a,t).

Now suppose that LRU(!) incurs a fault at time ¢. Then, at time ¢, LRU(I) evicts a page
z, z # x, whose last request occurred earlier than z’s last request. Hence 1 < w(z,t —1) <

w(z,t—1). Since the statements 1) and 2) hold, 2’s weight must decrease after z is evicted, i.e.,
w(z,t—1) > w(z,t). O

Lemma 2 implies that at any time ¢, 1 <¢ < m, a page @ € N(¢) can cause an increase in

potential of at most K — [— 1. Thus, for every t, 1 <t < m, we have
() —P(t—1)=(k—1—1)card(N(t)) - W(t), (1)

where W (t) = W(t) + W2(t) + W3(t) and

Wiy = 3 (k—1-1-w(a,t))

x€EN(t)
W2(t) = Z (w(z,t—1) — w(z,t))
2€S(t—1)NS(t)
W3(t) = w(z,t—1).
2€S(t—1)\S(t)
Forallt=1,2,...,m, we have
W(t) >0, W2(t) >0, W3(t) > 0. (2)

Clearly, W3(t) > 0. The inequalities W'(t) > 0 and W?(t) > 0 follow from Lemma 2 and

Lemma 3, respectively.

Next we estimate > i~ card(N(t)) and derive a bound on Y ;~; ®(t) — ®(t — 1). To each

element © € N (t) we assign the most recent eviction of # by OPT. More formally, let

Cs

X ={(z,t) e (| JN(t)) x[1,m]|lz € N(t)}.

t

We define a function f: X — [1,m]. For (z,t) € X we define

1

f(z,t) = max{s < t|OPT evicts page « at time s}.

Note that f is well-defined.

We prove two properties of the function f. Part b) of the following lemma will be useful

when bounding LRU(I)’s actual cost in each phase of o.

Lemma 4 a) The function f is injective.

b) Let (v,t) € X and f(x,t) =t'. Lett € [t2,t5], 0 <i < p. Ifi =0, thent' € [t3,t5]. If
i > 1, then t' € [tb_,t¢].

Proof: First we prove part a). Consider two distinct elements (z,¢1) € X and (y,t3) € X. We
show that f(xz,t1) # f(y,t2). If 2 # y, then there is nothing to prove. So assume z = y and let
t1 < ty. We have 2 € N(t1) and 2 € N(t3). Thus

z € S(t1) = Spro)(t) \{M(t1) U L(t1) U Sopr(t1)},

T € S(tz) = SLRU(I)(tZ) \ {M(tz) U L(tz) U SOPT(tZ)}
and
v ¢ S(ts = 1) = Spro(ta = D\ {M(ts = 1) UL(t, — 1) U Sopr(ts — 1)}

Since @ € Spruy(t2) \ {M(t2) U L(t2)}, we have @ € Sppyy(tz — 1) \ L(t2 — 1). This implies
x € M(ty — 1) U Sopr(ta — 1) because « ¢ S(t2 — 1). Note that @ ¢ M(t1) U Sopr(t1). We

conclude that page « must be requested at some time ¢ € [t; + 1, ¢, — 1]. Hence, OPT must evict
@ at some time t' € [t; 4+ 2,¢5]. Thus f(z,t1) < f(x,t2).

Now we show part b) of the lemma. Note that ¢’ = f(z,t) <t <¢. If i =0 or ¢ = 1, then
t € [th,t5] or t' € [th, ¢S], respectively, and part b) is proved. So suppose i > 2. We assume
t' < %, and show that this assumption implies € S(¢ — 1). This is a contradiction because
x € N(t) = S(t) \ S(t — 1). By the definition of #, the page « is not requested in the interval
[t,t] and « ¢ Sopr(t). It follows ¢ Sopr(s) for all s € [t/,¢]. Since z € S(t), we have
@ ¢ L(t). Thus, for all s € [¢/,t], is not contained in {o(s),o(s+1),...,0(t)} UL(t) D L(s).
By Property 1, phase P(i — 1) contains [+ 1 distinct pages. Since z is not requested in the
interval [t/,t] and ¥/ < t? | < ¢, < t, it follows = ¢ M(s) for all s € [t¢_,,t]. Note that
x € Spruy(t — 1) because x € S(t) C Spry()(t) and @ is not requested at time t. We conclude
that

€ Spro@y(t —D\N{M(@E -1 UL(t-1)USopr(t—1)} = S(t—1).

We obtain a contradiction because € N(t). Thus ¢ > t® ;. The proof of the lemma is

complete. O

Let Topr be the set of all ¢t € [1,m] such that OPT evicts a page at time t. Note that
Copr(c) = card(Topr). Let Thpy = {f(z,t)|(z,t) € X}. By Lemma 4, f is injective and
hence

i_”: card(N(t)) = card(X) = card(THpy).

Thus, by equation (1), we obtain

m m

S @) —@(t—1) = (k—1-card(Thpr) — >_W(t). (3)
t=1 t=1
Now we bound LRU(/)’s actual cost in each phase of ¢. For i =0,1,...,p, let Crrp (i) be
the actual cost LRU(I) incurs in serving phase P(7), and let Copr(i) be the cost OPT incurs in
serving P(7). Furthermore, let
Topr = Torr \ Topr

and, fort =0,1,...,p, let
TEpr(i) = {t € Toprlt) <t <15},
Lemma 5 a) CLRU(I)(O) = Copr(0)

b) Fori=1,2,...,p,

t¢
:

CLRU(I)(i) < COPT(i) + CaT‘d(Tng(i — 1)) + Z W(t)

—3b
t=t;

10

Proof: First we prove part a) of the lemma. Phase P(0) contains at most [4 1 distinct pages.
On the first & > [+ 1 faults, both LRU(/) and OPT load the requested page into fast memory.
Thus, during P(0), LRU(!) and OPT incur the same cost, i.e.,

Crruw(0) = Copr(0).

In the proof of part b), we consider a fixed ¢ € [1,p]. If Crry)(i) = 0, then the inequality
clearly holds because, by line (2), W(t) > 0 for all ¢ € [t%,¢]. So suppose Crro@(i) > 1. Let

C(i) = card(Spruay(ti_y) \{L() U Sopr(t;_1)}).

In the following we prove that the inequalities

Crro)(t) < Copr(i) + C(7) (4)
and -
C(i) < card(T3pri - 1) + 3. Wit) (5)

hold. These two inequalities imply part b).

First we prove inequality (4). At the beginning of phase P(i), there are card(Sgry)(ti_;) N
Sopr(t5_;)) pages which are contained in LRU({)’s as well as by OPT’s fast memory. Hence, at
the beginning of P(¢), OPT’s fast memory contains at most card(Sopr(t_1) \ SLru)(ti_1)) =
card(Stru)(ti—1)\Sopr(t;_,)) pages which are in L(t%) but which are not contained in LRU(I)’s
fast memory. Thus, during phase P(¢), LRU(I) incurs at most

card(Spruay(ti_1) \ Sopr(ti_y)) — card((Sprua)(ti_i) \ Sopr(ti_1)) N L(#)) =
card(Spruqy(ti_) \{L(t?) U Sopr(t;_,)})

faults more than OPT, i.e.,

Crrow(i) < Copr(2) + C(1).
Next we prove inequality (5). We introduce some notations. Let t € [t?,t¢]. For 2 € N(¢) let

Wl t) =k —1-1—w(x,t).

Forz € S(t—1)N S(t) let
W2(z,t) = w(z,t — 1) — w(z,t)

and for z € S(t — 1) \ S(¢) let
W3(z,t) = w(z,t - 1).

11

Note that

wlt) = Z Wt(z,t)

xEN(t)

W2(t) = > W?2(z,t)
2€S(t—1)NS(t)

W3(t) = > W3(z,t).

z€S(t—1)\S(t)

Forany 2 € N(t) (z € S(t —1)NS(t), z € S(t — 1)\ S(t)) we have
Wz, t) >0 (W2(z,t) >0, W3(z,t) > 1). (6)

The inequality W (z,t) > 0 follows from Lemma 2. Lemma 3 implies W2(x,t) > 0. If 2 €
S(t—1)\ S(t), then & € Sppy()(t —1) \ L(t — 1) and hence 1 < w(x,t — 1) = W?(z,t).

We sketch the main idea of the proof of inequality (5). We show that for each page z €
Spro@ (1) \ {L(#*) U Sopr(t5_,)} one of the following two statements holds.

1) There exists a t' € T4 py(i — 1) such that OPT evicts page = at time #'.

2) There exists a time ¢/ € [t2,¢¢] and a j € {1,2,3} such that W7 (x,t') > 1.

1072
These statements, together with line (6), imply the correctness of inequality (5).

Consider a page © € Spru)(ti_1) \ {L{#%) U Sopr(t5_,)}. We distinguish between two main
cases.
Case 1: For t = #¢_,, t ¢+ 1,...,t5, o ¢ S(¢¥)
We prove that statement 1) holds. Since z € Sppye)(ti_y) \ {L(t*) U Sopr(t5_,)}, we have
x ¢ Sopr(t5_y). Let t = max{s < t{_,|OPT evicts page = at time s}. In the following we show
that ¢ > t® | and ¢’ ¢ T} pp, which implies ¢/ € T3pp(i — 1). If i = 1, then ¢/ > 1 =t§ = ¢%_|.
So let ¢ > 2 and suppose t' < t*_,. By the definition of #, z is not requested in the interval
[t/,t5_;]. Thus, x is not contained in phase P(i — 1). By Property 1, phase P(i — 1) contains
[+ 1 distinct pages, and hence = ¢ M (t5_,). We have = # o(t5_,) and = ¢ L(t%), which implies
v ¢ L(t;_,). Since @ € Spru(t_y) \ Sopr(t;_,), we conclude

x € Sppuay(tio) \{M(#_,) U L(H_1) USopr(ti_y)} = S(ti_).

We obtain a contradiction because = ¢ S(t) for all ¢ € [t¢_,,#5]. Thus t' > t?_|.

Next we show t' ¢ T/} pr. We have to prove that there exists no pair (z,s) € X satisfying
t' < s < mand f(z,s) = t'. Assume that there is such a pair. Since t' < t§ ;, part b) of
Lemma 4 implies s < t§. We have 2 ¢ S(t) for all t € [t{_;,¢5] and hence ¢ N(t) for all
t € [t5_y,t5]. Thus ¢/ < s < t{_,. The page z is contained in N(s), i.e., it is contained in
S(s). This implies « ¢ M(s). By the definition of #, z is not requested in [t/,£$;] and hence
x ¢ M(t5_,). Since @ # o(ts_,) and @ ¢ L(t%), we have = ¢ L(t¢_,). Thus

S SLRU(I)(tf—l) \ {M(tf—ﬁ U L(tf—ﬁ U SOPT(tf—ﬁ} = S(tf—ﬁ

12

because * € Spry)(t5_1) \ Sopr(t;_;). As above, we obtain a contradiction.

Case 2: There exists a t, t§_; <t <5, such that z € S(¢t)
In this case we show that the above statement 2) holds. Let ¢.,i, be the smallest t € [tS_,,tS]
such that z € S(t).

Case 2.1: tymin = t§_4

Let t” be the time when LRU({) incurs the first fault during phase P(z). We consider w(z,t”).

If w(z,t") = 0, then = ¢ S(t"). Hence there must exist a t/, 2 < #' < ", such that z €

St — 1)\ S(t'). Thus W3(x,t') > 1. Now suppose w(x,t") > 1. Then x € Spry)(t”) \ L(t").

We have x € S(t¢_,). Since z ¢ L(t?), the page is not requested in the interval [t?,¢"]. We

easily verify that for all s € [t;_,,t"], * € Spry)(s) \ Sopr(s) and @ ¢ M(s) U L(s). Thus

z € St —1)NS(t"). Now Lemma 3 implies W?2(xz,t") > 1.

Case 2.2: tyin > t§_4

If w(z,tmin) <k —1—1, then W (2, tmin) > 1. Suppose w(x,tmin) = k — [— 1. By Property 2,
w(z,t§) < k—1—2. This implies that if 2 € S(s) for all s € [tmin, t§], then there must exist a

time t/, tmin < t' < t¢, such that W(z,t') > 1. If # ¢ S(s) for some s € [tin, t¢], then there

must exist a time ¢’ € [tmin + 1,¢5] with € S(# — 1)\ S(¢') and hence W3(z,#') > 1.

The proof of Lemma 5 is complete. O

Using equation (3) and Lemma 5, it is easy to finish the proof of Theorem 1. We estimate

LRU(I)’s amortized cost. By equation (3) we have

Corv(0)+ B(m) = 3(0) = Corvp(o)+ > B(t) - B(t - 1)

t=1

= Com(o) + (k= 1= Deard(Thor) ~ S W ()

Lemma 5 implies that

Crro@(o) + &(m) — 2(0) = ZCLRU - wit — 1 1)card(Thpy)
t=1
p—1
< ZCOPT aT‘d TOPT —|—ZW
t=t?
— Z W(t)+ (k=1 - 1Vcard(Thpy).
t=1

Line (2) implies that W (t) > 0 for all t € [t},t5]. Hence

Crro@y(o) + ®(m) — ®(0) < Copr(o) + card(T3 py) + (k — 1 — 1)card(T} pr)
< Copr(o)+ (k—1—1card(Topr)
= (k—DCopr(0).

The proof of Theorem 1 is complete.

13

Next we present another on-line algorithm with strong lookahead. This algorithm does not

use full lookahead but rather serves the request sequence in a series of blocks.

Algorithm LRU(/)-blocked: Serve the request sequence in a series of blocks B(1), B(2),...,
where B(1) = 0(1),0(2),...,0(A(1)) and B(i) = o(t;_; + 1),0(t;_1 +2),...,0(A(t5_, + 1)) for
i > 2. Here t5_, denotes the end of block B(i—1). If there occurs a fault while B(7) is processed,
then the following rule applies. Among the pages in fast memory which are not contained in

B(i), determine the page whose last request occurred least recently. Evict that page.

LRU(I)-blocked has the advantage that it updates its information on future requests only
once during each block. Thus it can respond to requests faster that LRU(!). Furthermore,
LRU(I)-blocked takes into account that in practice requests often arrive in blocks. Interestingly,

this simpler algorithm is only slightly weaker than LRU().

Theorem 2 Let! < k—2. The algorithm LRU(l)-blocked with strong lookahead [is (k—141)-

competitive.

Proof: We assume that the request sequence consists of b blocks B(1), B(2),...,B(b). For
i=1,2,...,b, let t* and t¢ denote the beginning and the end of block B(i), respectively. Again
we assume that LRU(/)-blocked and OPT start with an empty fast memory. On the first &
faults, both LRU(/)-blocked and OPT load the requested page into fast memory. We assume
that o contains at least [+ 1 distinct requests. The following proof is very similar to the proof
of Theorem 1.

The potential function we use to analyze LRU(I)-blocked resembles the function we intro-
duced in the proof of Theorem 1. For ¢t = 1,2,...,m, the values pu(t) and the sets M(t) are
defined as in the previous proof. Let Sy rrr(;)(t) be the set of pages contained in LRU(/)-blocked’s
fast memory after request ¢, and let Sppr(t) be the set of pages contained in OPT’s fast memory
after request t, 1 <t < m. Spry)(0) and Sopr(0) denote the sets of pages which are initially
in fast memory, i.e., Sppi)(0) = Sopr(0) = 0. Fort =1,2,...,m, we define values y(t). Set
v(t) =i iff t? <t <t¢. Let Sp(t) be the set of pages that are requested during block B(y(t)).

Again, we assign weights to all pages. Let w(z,t) denote the weight of page z after request ¢,
1<t<m. If o ¢ Sppyq)(t) orif @ € Sp(t) then w(x,t) = 0. Let j = card(Spry)(t) \ Sa(t)).
Assign integer weights from the range [1, j] to the pages in Sppy)(t) \ Sp(t) such that

w(e,t) < wly,t)
iff the last request to & occurred earlier than the last request to .
Fort=1,2,...,m, let
S(t) = Spru () \{M(t) U Sp(t) U Sopr(t)}.

The potential function is defined as

In the following, we evaluate LRU(/)-blocked’s amortized cost on the request sequence o.
First we derive a bound on the increase in potential Y j*; ®(¢) — ®(t — 1). Then we determine

LRU(I)-blocked’s actual cost in each block of o.

Fort=1,2,...,mlet
N(@t)y=S@)\S(t—-1).

Again, we set M (0) = Sp(0) = 0 and S(0) = Spry)(0) \ {M(0) U Sp(0) U Sopr(0)}, which we
need in the definition of N(1) = S5(1)\ S(0).

Lemma 6 Let1 <t <m. Ifx € N(t), then w(x,t) <k —-1-1.

Proof: The definition of N(t) implies * € Sy (t) \ {M(t) U Sp(t) U Sopr(t)} and hence
v ¢ M(t). We show that all pages y € M(t) satisfy y € Sppy()(t). Suppose t € [tb, <],
1 < i < b. Consider an arbitrary y € M(t). If y is requested in the interval [t2,¢], then the
definition of the algorithm LRU(!)-blocked implies y € Sppy(r)(t). Suppose y is not requested
in the interval [t2,¢]. Then i > 2 and y must be requested at some time ¢ € [u(t),t5_,]. Since
block B(i — 1) contains [4+ 1 distinct pages, we have t?_; < pu(t). Thus, by the definition
of the algorithm LRU(!)-blocked, y € Spry@y(ti_;). We have x ¢ M(t), and hence z is not
requested in the interval [u(t),]. It follows that @ € Spry)(p(t) — 1) (because x € Spry)(t))
and that at any time s, t? < s < t, ’s most recent request is longer ago than y’s most recent
request. Since x ¢ Sp(t), z is a candidate for eviction throughout the interval [t?,¢], but is not
evicted. Hence, y cannot be evicted in the interval [t?,¢] and must be in Srru)(t). The set
M (t) contains [+ 1 distinct pages, and each of these pages was requested more recently than z.
Thus w(z,t) <k —-1-1. O

Lemma 7 Let1 <t <mandz € S(t—1)NS(t). Then x’s weight satisfies w(x,t—1) > w(z,t).
In particular, if LRU(1)-blocked incurs a fault at time t, then w(z,t — 1) > w(z,t).

Proof: The lemma can be shown in the same way as Lemma 3. Only the proof of the state-
ment 1) is slightly different: Consider a page y, y # @, which satisfies w(y,t — 1) = 0 and
w(y,t) > 0. Suppose t € [t?,¢¢], 1 < i < b. The inequality w(y,t) > 0 implies that y is not
requested in block B(i). We have y € Spry)(t). Thus, y € Sprp@)(t — 1) because y is not
requested at time ¢. Hence, equation w(y,t — 1) = 0 implies y € Sp(t — 1), i.e., y is requested
in the block which contains time ¢ — 1. It follows ¢ > 2, ¢ = t? and t — 1 = #¢_,. Note that z is
neither requested in block B(¢ — 1) nor in block B(¢) because w(z,t — 1) > 1 and w(z,t) > 1.
We conclude that at time ¢, 2’s most recent request is longer ago than y’s last request. Thus

w(z,t) < w(y,t). O

Lemma 6 implies that for every ¢, 1 <t < m,

B(t) — B(t — 1) = (k — Deard(N(t)) — W(t), (7)

15

where

and
W = Y (- - ()
z€N(t)
W2(t) = Z (w(z,t—1) — w(z,t))
2€S(t—1)NS(t)
W3(t) = w(z,t—1).
2€S(t—1)\S(t)
Fort=1,2,..., m we have

W(t) >0, W2(t) >0, W3(t) > 0. (8)

Obviously, W?3(t) > 0. The inequalities W'(¢) > 0 and W?(t) > 0 follow from Lemma 6 and

Lemma 7, respectively.

Our next goal is to determine ;" card(N (t)) and to bound Y /2, &(t) —®(t—1). We define

a set X and a function f in exactly the same way as in the proof of Theorem 1.

Using a similar analysis as in the proof of Lemma 4 we are able to show

Lemma 8 a) The function f is injective.

b) Let (z,t) € X and f(z,t) =t'. Lett € [t2,¢5], 1 < i <b. Ifi=1, thent € [t},¢5]. If
i > 2, then t' € [t ,tS].

As in the proof of Theorem 1, let Topr be the set of all t € [1, m] such that OPT evicts a
page at time t. Again, we have Copr(o) = card(Topr). Let Tdpr = {f(z,t)|(z,t) € X }. Since
the function f is injective (see Lemma 8), we have Y ;2 card(N (t)) = card(X) = card(T} py).
Hence, equation (7) implies

m m

S @) —@(t—1) = (k= Deard(THpr) — Y_ W (t). (9)

Next we bound LRU(!)’s actual cost in each block of o. For i = 1,2,...,b, let Cprp(p(¢) be
the actual cost LRU({)-blocked incurs in serving block B(:), and let Copr(i) be the cost OPT
incurs in serving B(7). Let

Topr = Torr \ Topr
and, forv=1,2,...,b, let
Topr(i) = {t € Toprlt; <t < t5}.

16

Lemma 9 a) Crry)(1) = Copr(1)

b) Fori=23,...,b,

te

Crruw (i) < Copr(i) + card(Tipr(i — 1)) + Z Wt

t=tb
2

Proof: Part a) of the lemma can be shown in the same way as the corresponding statement of
Lemma 5. We prove part b). Fix an 7 € [2,b]. If Crppy(i) = 0, then there is nothing to show
because W (t) > 0 for all ¢ € [t2,£¢] (see line (8)). So assume Crro@(i) > 1. Let

1?72

C(i) = card(Spruay(ti_1) \ {SB(t}) U Sopr(ti_)}).

During block B(i), LRU(I)-blocked incurs at most C/(i) faults more than OPT, i.e.,

Crro)(t) < Copr(i) + C(3). (10)
We show that the inequality
C() < Card(TOPT -I— Z W (11)
t=tb

holds. Inequalities (10) and (11) imply part b) of Lemma 9.

We need some more notations. Let t € [t2,t¢]. For x € N(t) let W'(2,t) = k — | — w(x,).
For z € S(t — 1) N S(t) let W2(z,t) = w(z,t — 1) — w(z,t) and for z € S(t — 1) \ S(t) let
W?3(z,t) = w(z,t — 1). We have

= Y Wh(z,t), W)= oo Wiat), Wiy = > WP(a1).

c€EN(t) 2€S(—1)NS(t) 2€S(t—1)\S(t)
Furthermore, for a page € N(t) (zx € S(t—1)N S(t), z € S(t — 1)\ S(t)), we have

Wz, t) >0 (W?(x,t) >0, W3(x,t) > 1). (12)

We prove inequality (11). Consider a page v € Sppy)(ti—;) \ {SB () U Sopr(ts)}
Case 1: For t =t¢_, t2, ¢ +1,...,t5, = ¢ S(¢t)

=120 Yy
Using the same analysis as in the proof of Lemma 5 we can show that there exists a time

t' € T3 pr(i — 1) such that OPT evicts a page at time #'.

Case 2: There exists a ¢, t§_;, <t < t¢, such that 2 € S(t)

We show that there exists a time # € [t?,#¢] and a j € {1,2,3} such that W7 (z,#) > 1. Let tpn
be the smallest t € [t{_,, ¢] such that z € S(?).

Case 2.1: tymin = t§_4

Let t” be the time when LRU(/)-blocked incurs the first fault during block B(7). Again, we can

17

apply the same analysis as in the proof of Lemma 5. If w(z,t"”) = 0, then we can show that
there exists a time ¢/, t < ¢’ < ¢¢, such that W3(z,#) > 1. If w(z,t") > 1, then we can prove
W2(z,t") > 1.

Case 2.2: tyin > t§_4

By Lemma 6, w (2, tymin) < k — [— 1. Hence W!(z, tpn) > 1.

The above case analysis, together with line (12), implies inequality (11). The proof of

Lemma 9 is complete. O

Let Crruy(o) be the actual cost LRU(/) incurs in serving the request sequence o. Using

equation (9) and Lemma 9 we can easily prove
Crro@(o) + @(m) — 2(0) < (k- 1+ 1)Copr(o).

The proof of Theorem 2 is complete. O
The following theorem shows that LRU(!) and LRU(!)-blocked are optimal and nearly opti-

mal, respectively.

Theorem 3 Let A be a deterministic on-line paging algorithm with strong lookahead [, where
| <k—2.If Ais c-competitive, then ¢ > (k —1).

Proof: Let S = {xy,29,..., 2511} be aset of k+ 1 pages. We assume without loss of generality
that A’s and OPT’s fast memories initially contain 2y, 29,...,2g. Let SL = {&y, 29,...,2;}. We
construct a request sequence o consisting of a series of phases. Each phase contains [+ 1 requests
to [+ 1 distinct pages. The first phase P(1) consists of requests to the pages in SL, followed by
a request to the page xp41 which is not in fast memory, i.e., P(1) = 21, 23,..., 2, ¥x+1. Each
of the following phases P(7), ¢ > 2, has the form P(i) = z1,%2,..., 21, y;, where y; € S\ SL is
chosen as follows. Let z; € S be the page which is not in A’s fast memory after the last request
of phase i — 1. If z; € S\ SL, then set y; = z;. Otherwise, if z; € SL, y; is an arbitrary page in
S\ SL. The algorithm A incurs a cost of 1 in each phase. We show that during k — [successive
phases, OPT’s cost is at most 1. This proves the theorem. OPT always keeps 21, 23,...,2; in
its fast memory. Note that k — [successive phases contain at most k different pages. If OPT
incurs a fault on the last request in a given phase, then OPT can evict a page such that all

pages in the next k — [— 1 phases remain in fast memory. O

So far, we have assumed k > 3 and [< k — 2, which, of course, is the interesting case. Note
that if [= k — 1 and the total number of different pages in the memory system equals k + 1,
then LRU(!) achieves a competitive factor of 1 because it behaves like Belady’s optimal paging
algorithm MIN [2].

18

3 Randomized paging with strong lookahead

Suppose a randomized paging algorithm has a strong lookahead of size [. Again, we assume
k>3 and | < k — 2. The first algorithm we propose is a slight modification of the MARKING
algorithm due to Fiat et al. [5]. The MARKING algorithm proceeds in a series of phases. During
each phase a set of marked pages is maintained. At the beginning of each phase all pages are
unmarked. Whenever a page is requested, that page is marked. On a fault, a page is chosen
uniformly at random from among the unmarked pages in fast memory, and that page is evicted.
A phase ends immediately before a fault, when there are k£ marked pages in fast memory. At

that moment all marks are erased and a new phase is started.

The modified algorithm with strong lookahead [uses lookahead once during each phase.

Algorithm MARKING(/): At the beginning of each phase execute an initial step: Determine
the set S of pages which are in the present lookahead but not in fast memory. Choose card(S)
pages uniformly at random from among the pages in fast memory which are not contained in
the current lookahead. Evict these pages and load the pages in S. After this initial step proceed
with the MARKING algorithm.

Theorem 4 Let! < k — 2. The algorithm MARKING(l) with strong lookahead | is 2H (k —)-

competitive.

Proof: The idea of the proof is the same as the idea of the original proof of the MARKING
algorithm [5]. We assume without loss of generality that MARKING()’s and OPT"s fast mem-
ories initially contain the same k pages. During each phase we compare the cost incurred by
MARKING(I) to the cost incurred by the optimal algorithm OPT. Consider an arbitrary phase.
We use the same terminology as Fiat et al. A page is called stale if it is unmarked but was

marked in the previous phase, and clean if it is neither stale nor marked.

Let ¢ be the number of clean pages and s be the number of stale pages requested in the
phase. Note that ¢ + s = k. Fiat et al. prove that OPT has an amortized cost of at least ¢/2
during the phase.

We evaluate MARKING(/)’s cost during the phase. Serving c¢ requests to clean pages ob-
viously costs ¢. It remains to bound the expected cost for serving the stale pages. Let s; be
the number of stale pages contained in the lookahead at the beginning of the phase and let
s3 = s — s1. Then s; + ¢ > I+ 1 because every page in the lookahead is either clean or counted
in s;. Thus s =s—s; <k—c—(I+1—-¢) =k —1-1. Note that serving the first s; stale
requests does not incur any cost and that we just have to evaluate MARKING({)’s cost on the
following s, requests to stale pages. We determine the expected cost of the (sq + j)-th request
to a stale page, 1 < j < s3. Let é(j) be the number of clean pages which are requested in the
phase before the (s1 4 j)-th request to a stale page. Furthermore, let 5(j) be the number of stale
pages which remain before that request. When MARKING(!) serves the (sq + j)-th request to

19

a stale page, exactly 5(j) — ¢(j) of the 5(j) stale pages are in fast memory (the 5(j) — é(j) pages
in fast memory form a random subset of the §(j) stale pages). Thus, the expected cost of the
request equals
sU)—elg) o,) 4 _ €l)
o TS TS

Note that ¢(j) < ¢ and that 5(j) =k — sy —j+ 1 for j = 1,2,...,s2. It follows that the
expected cost of the requests to stale pages is bounded by

C C C C

k—Sl—I_k—Sl—]_—I_k—81—2+”'+k—81—82—|—1
Cc Cc Cc Cc

- k—sl+k—51—1+k—81—2+'”+k—s—l—l'

The above sum consists of s < k —1— 1 terms and § is missing. Hence the sum is bounded by
c(H(k —1)— 1), and we conclude that MARKING(!)’s cost during the phase is bounded from
above by ¢H (k —). This proves the theorem because OPT’s amortized cost during the phase
is at least ¢/2. O

This following theorem implies that MARKING(/) is nearly optimal.

Theorem 5 Let I < k — 2 and let A be a randomized on-line paging algorithm with strong
lookahead I. If A is c-competitive, then ¢ > H(k —1).

Proof: The proof is similar to Raghavan’s proof that no randomized on-line paging algorithm
(without lookahead) can be better than H(k)-competitive [12]. Let S = {1, 22,...,2k+1} be
a set of k + 1 pages and let SL = {zy,29,...,2;}. We assume without loss of generality that
initially the pages 1, 2, ...,z are in OPT’s fast memory and in the fast memory of the on-line
paging algorithm A.

The request sequence ¢ which we will choose consists of a series of phases P(¢). The first
phase has the form P(1) = 21,23,...,2,y1, where y; = zg41. Each of the following phases
P(i), ¢ > 2, equals P(i) = a1,23,...,%1,Y;, where y; is chosen uniformly at random from
S\N{SLU{yi-1}}.

As in Raghavan’s original proof, the request sequence ¢ can be partitioned into a series of
rounds R(1), R(2), R(3),..., such that during each round, OPT incurs a cost of exactly 1. The
first round R(1) consists of the first phase only, i.e., R(1) = P(1). The following rounds R(7),
i > 2, contain requests to all k41 pages in S. More specifically, each round R(¢), 7 > 2, is finished
when, for the first time, every page in .S has been requested at least once. Again, for:=1,2,...,
let t§ denote the end of round R(¢). Then round R(7) comprises o (t{_; +1),0(t;_;+2),...,0(t),

where t§ satisfies
t: = min{s > t{_;|card({o(t;_; + 1),0(t;_1 +2),...,0(s)}) =k + 1}.

Note that the end of each round coincides with the end of a phase.

20

It is easy to see that OPT can serve the request sequence in such a way that its cost in each
round equals 1. On a fault, OPT simply evicts the page that will be requested last in the next

round.

Now let DA be a deterministic on-line paging algorithm with strong lookahead I. We analyze
D A’s expected cost on o. During the first round, DA incurs a cost of 1. We show that in each
of the remaining rounds, DA has an expected cost of at least H(k —1). Applying Yao’s minimax
principle [16] we obtain the theorem. In every phase P(¢), ¢ > 2, DA has an expected cost of
at least ﬁ Using a technique presented in Raghavan’s original proof, we can easily show that
the expected number of phases in each round R(¢), 7 > 2, equals (k — [)H(k —1). Thus DA’s
expected cost in each round R(¢), ¢ > 2,is H(k—1). O

We conclude this section by presenting another randomized algorithm, called RANDOM()-
blocked. As the name suggests this algorithm is a variant of the algorithm RANDOM due to
Raghavan and Snir [13]. On a fault RANDOM chooses a page uniformly at random from among
the pages in fast memory and evicts that page. In terms of competitiveness RANDOM(/)-blocked
represents no improvement upon the previously presented algorithms with strong lookahead.
However, RANDOM(!)-blocked, as the original algorithm RANDOM, is very simple and uses

no information on previous requests.

Algorithm RANDOM(/)-blocked: Serve the request sequence o in a series of blocks. These
blocks have the same structure as those in the algorithm LRU(/)-blocked. At the beginning of
block B(7) determine the set S; of pages in B(7) which are not in fast memory. Choose card(S;)
pages uniformly at random from among the pages in fast memory which are not contained in

B(i). Evict these pages and load the pages in S;. Then serve the requests in B(z).

Theorem 6 Let | < k — 2. The algorithm RANDOM(I)-blocked with strong lookahead [is
(k — 1 4 1)-competitive.

Proof: The potential function we use to analyze the algorithm is
O(t) = (k—1) - card(Sr(t) \ Sopr(t)).

Sr(t) denotes the set of pages contained in RANDOM(!)-blocked’s fast memory after request
t and Sopr(t) denotes the set of pages contained in OPT’s fast memory after request t. We
assume that RANDOM(/)-blocked and OPT start with the same initial fast memory.

Suppose the request sequence o consists of b blocks B(1), B(2), ..., B(b). We assume without
loss of generality that the last block B(b) contains [4+ 1 distinct requests. The values 2 and
t¢ denote the beginning and the end of block B(¢), respectively. Define t§ = 0. Let E[®(t¢) —
®(t5_;)] be the expected change in potential between t§_; and t§. Furthermore, let Cr(¢) and
Copr(t) denote the cost incurred by RANDOM(!)-blocked and OPT during block B(i). We
show that for all e = 1,2,...,b,

Cr(i) + E[2(t]) — (t;_)] < (k= 1+ 1)Copr(i).

21

This inequality proves the theorem.

If Cr(¢) = 0, then the inequality clearly holds. Each time OPT incurs a fault during block
¢, it might evict a page which is in Sgr(t5_;) = Sgr(tS). Hence each eviction can increase the
potential by (k —1).

Now suppose Cr(¢) > 1 and let
C(i) = card(Sr(t;_4) \ {L(t}) U Sopr (t;_1)})-

We analyze the effect of the moves by RANDOM(!)-blocked and OPT on the potential function

&, and assume that our on-line algorithm serves the current block first and OPT serves second.

RANDOM(()-blocked evicts Cr(i) pages at the beginning of block B(:¢). The pages to be
evicted are chosen from among k — [— 1+ CRr(7) pages in fast memory which are not in B(z).
Among these k —1 —14Cp(i) pages, exactly C (i) pages contribute to ®(t). Thus RANDOM(I)-
blocked’s evictions cause an expected decrease in potential of

C()
k—1-14Cr(?)

1

> (k= DC()

(k = 1)CRr(3) = C(i).

Note that a newly loaded page might not be in Sop7(tS_,), which can increase the potential
by (k — 1) per page. Hence, RANDOM(()-blocked’s eviction rule cause an expected increase of

potential of at most

—C(i) + (k = DCRr(Y).

We consider OPT’s cost. Each time OPT evicts a page, this can increase the potential by
(k —1). Note that a page which is requested in B(¢) is not in Sopr(t§) if and only if it was
evicted by OPT during B(¢). Hence

Cr(i) + E[2(t]) — 2(t;_1)) < Cr(i) = C(i) + (k —)Copr(i).
Since Cr(i) < Copr(i) + C(i), we obtain

Cr(1) + E[2(t;) — (t;_1)] < (k =1+ 1)Copr ().

4 Open problems

In this paper we have introduced a new model of lookahead, called strong lookahead, and have
analyzed several on-line paging algorithms using this model. One open problem is to determine
the exact competitiveness of the algorithm LRU()-blocked. Is the algorithm (k —[)-competitive
or can a lower of (kK — [+ 1) on the competitive factor be shown? Another open problem is to
extend other k-competitive on-line paging algorithms, such as the algorithm FIFO, to our model
of strong lookahead. Intuitively, FIFO(I), where [< k — 2, would work as follows: On a fault it

22

evicts the page that has been in fast memory longest among pages in fast memory that are not

contained in the present lookahead. It is worth noting that the techniques which we have used
in proving that LRU(I) is (k —[)-competitive can not be applied directly to show that FIFO(I) is

(k —l)-competitive. Finally, an interesting problem is to present other models of lookahead that

are of theoretical and practical interest and improve the competitive factors of on-line paging

algorithms.

Acknowledgment

The author thanks Kurt Mehlhorn for helpful discussions. She also thanks Volker Priebe and

Ronald Rasch for careful reading of the manuscript.

References

[1]

[10]

[11]

[12]

A. Agarwal, R.L. Sites and M. Horowitz. ATUM: A new technique for capturing address
traces using microcode. In Proc. 13th Annual Symposium on Computer Architecture, pages
119-127, 1986.

L.A. Belady. A study of replacement algorithms for virtual storage computers. IBM Systems
Journal, 5:78-101, 1966.

S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power of
randomization in on-line algorithms. Algorithmica, 11(1):2-14, 1994.

F.K. Chung, R. Graham and M.E. Saks. A dynamic location problem for graphs. Combi-
natorica, 9(2):111-131, 1989.

A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator and N.E. Young. Competitive
paging algorithms. Journal of Algorithms, 12:685-699, 1991.

S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms. Algo-
rithmica, 11(1):73-91, 1994.

M.M. Halldérsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proc. 3rd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 211-216, 1992.

S. Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53-62, 1994.

M.-Y. Kao and S.R. Tate. Online matching with blocked input. Information Processing
Letters, 38:113-116, 1991.

A.R. Karlin, M.S. Manasse, L. Rudolph and D.D. Sleator. Competitive snoopy caching.
Algorithmica, 3(1):79-119, 1988.

L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging algorithm.
Algorithmica, 6:816-825, 1991.

P. Raghavan. Lecture notes on randomized algorithms. IBM Research Report No. RC 15340
(# 68237), Yorktown Heights, 1989.

23

[13] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In Proc. 16th

International Colloquium on Automata, Languages and Programming, Springer Lecture
Notes in Computer Science, Vol. 372, pages 687-703, 1989.

[14] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Com-
munication of the ACM, 28:202-208, 1985.

[15] J.R. Spirn. Program Behavior: Models and Measurements. Elsevier, New York, 1977.

[16] A.C.-C. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc.
17th Annual IEEE Symposium on Foundations of Computer Science, pages 222-227, 1977.

[17] N. Young. Competitive Paging and Dual-Guided On-Line Weighted Caching and Match-
ing Algorithms. Ph.D. thesis, Princeton University, 1991. Available as Computer Science
Department Technical Report CS-TR-348-91.

24

