
On the Inuence of Lookahead in CompetitivePaging AlgorithmsSusanne Albers�AbstractWe introduce a new model of lookahead for on-line paging algorithms and study severalalgorithms using this model. A paging algorithm is on-line with strong lookahead l if it seesthe present request and a sequence of future requests that contains l pairwise distinct pages.We show that strong lookahead has practical as well as theoretical importance and improvesthe competitive factors of on-line paging algorithms. This is the �rst model of lookaheadhaving such properties. In addition to lower bounds we present a number of deterministicand randomized on-line paging algorithms with strong lookahead which are optimal or nearlyoptimal.Keywords: On-Line Algorithms, Paging, Lookahead, Competitive Analysis.1 IntroductionIn recent years, the competitive analysis of on-line algorithms has received much attention.Among on-line problems, the paging problem is of fundamental interest. Consider a two-levelmemory system which has a fast memory that can store k pages and a slow memory that canmanage, basically, an unbounded number of pages. A sequence of requests to pages in thememory system must be served by a paging algorithm. A request is served if the correspondingpage is in fast memory. If the requested page is not stored in fast memory, a page fault occurs.Then a page must be evicted from fast memory so that the requested page can be loaded intothe vacated location. A paging algorithm speci�es which page to evict on a fault. The costincurred by a paging algorithm equals the number of page faults. A paging algorithm is on-lineif it determines which page to evict on a fault without knowledge of future requests.We analyze the performance of on-line paging algorithms using competitive analysis [14, 10].In a competitive analysis, the cost incurred by an on-line algorithm is compared to the costincurred by an optimal o�-line algorithm. An optimal o�-line algorithm knows the entire requestsequence in advance and can serve it with minimum cost. Let CA(�) and COPT (�) be the cost�Address: Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Email:albers@mpi-sb.mpg.de. This work was done while the author was a student at the Graduiertenkolleg Informatik,Universit�at des Saarlandes, and was supported by a graduate fellowship of the Deutsche Forschungsgemeinschaft.1



of the on-line algorithm A and the optimal o�-line algorithm OPT on request sequence �. Thenthe algorithm A is c-competitive, if there exists a constant a such thatCA(�) � c �COPT (�) + afor all request sequences �. The competitive factor of A is the in�mum of all c such that A isc-competitive. If A is a randomized algorithm, then CA(�) is the expected cost incurred by A onrequest sequence �. In this paper we evaluate the performance of randomized on-line algorithmsonly against the oblivious adversary (see [3] for details). An optimal o�-line paging algorithmhas been exhibited by Belady [2]. The algorithm is also called the MIN algorithm. On a fault,MIN evicts the page whose next request occurs farthest in the future.The paging problem (without lookahead) has been studied intensively. Sleator and Tarjan[14] have demonstrated that the well-known replacement algorithms LRU (Least Recently Used)and FIFO (First-In First-Out) are k-competitive. On a fault LRU removes the page that wasrequested least recently, and FIFO evicts the page that has been in fast memory longest. Sleatorand Tarjan have also proved that no on-line paging algorithm can be better than k-competitive;hence LRU and FIFO achieve the best competitive factor. Fiat et al. [5] have shown that norandomized on-line paging algorithm can be better than H(k)-competitive against an obliviousadversary. Here H(k) = Pki=1 1=i denotes the kth harmonic number. They have also given asimple replacement algorithm, called the MARKING algorithm, which is 2H(k)-competitive.McGeoch and Sleator [11] have proposed a more complicated randomized paging algorithmwhich achieves a competitive factor of H(k).In this paper we study the problem of lookahead in on-line paging algorithms. An impor-tant question is, what improvement can be achieved in terms of competitiveness, if an on-linealgorithm knows not only the present request to be served, but also some future requests. Thisissue is fundamental from the practical as well as the theoretical point of view. In paging sys-tems some requests usually wait in line to be processed by a paging algorithm. One reasonis that requests do not necessarily arrive one after the other, but rather in blocks of possiblyvariable size. Furthermore, if several processes run on a computer, it is likely that some of themincur page faults which then wait for service. Many memory systems are also equipped withprefetching mechanisms, i.e., on a request not only the currently accessed page but also somerelated pages which are expected to be asked next are demanded to be in fast memory. Thuseach request generates a number of additional requests. In fact, some paging algorithms usedin practice make use of lookahead [15]. In the theoretical context a natural question is: Whatis it worth to know a part of the future?Previous research on lookahead in on-line algorithms has mostly addressed dynamic locationproblems and on-line graph problems [4, 9, 7, 6, 8]; only very little is known in the area ofcompetitive paging with lookahead. Consider the intuitive model of lookahead, which we callweak lookahead. Let l � 1 be an integer. We say that an on-line paging algorithm has a weaklookahead of size l if it sees the present request to be served and the next l future requests. It2



is well known that this model cannot improve the competitive factors of on-line paging algo-rithms. If an on-line paging algorithm has a weak lookahead of size l, then an adversary thatconstructs a request sequence can simply replicate each request l times in order to make thelookahead useless. The only other result known on competitive paging with lookahead has beendeveloped by Young [17]. According to Young, a paging algorithm is on-line with a resource-bounded lookahead of size l if it sees the present request and the maximal sequence of futurerequests for which it will incur l faults. Young presents deterministic and randomized on-linepaging algorithms with resource-bounded lookahead l which are maxf2k=l; 2g-competitive and2(ln(k=l) + 1)-competitive, respectively. However, the model of resource-bounded lookahead isunrealistic in practice. A subsequence on which an algorithm incurs l faults can be very long.Moreover, the sequence of future requests to be seen by an on-line algorithm depends on thealgorithm's behavior on past requests.We now introduce a new model of lookahead which has practical as well as theoreticalimportance. As we shall see, this model can improve the competitive factors of on-line pagingalgorithms. Let � = �(1); �(2); : : : ; �(m) be a request sequence of length m. �(t) denotes therequest at time t. For a given set S, card(S) denotes the cardinality of S. Let l � 1 be aninteger.Strong lookahead of size l: The on-line algorithm sees the present request and a sequence offuture requests. This sequence contains l pairwise distinct pages which also di�er from the pagerequested by the present request. More precisely, when serving request �(t), the algorithm knowsrequests �(t+1); �(t+2); : : : ; �(t0), where t0 = minfs > tjcard(f�(t); �(t+1); : : : ; �(s)g) = l+1g.The requests �(s), with s � t0 + 1, are not seen by the on-line algorithm at time t.Strong lookahead is motivated by an analysis of request sequences that occur in practice:Subsequences of consecutive requests generally contain a number of distinct pages. This observa-tion is supported by simulations that we have done using the ATM address traces by Agarwal etal. [1]. From a theoretical point of view we require an adversary to reveal some really signi�cantinformation on future requests. Although an adversary may replicate requests in the lookahead,an on-line algorithm is provided with relevant information about the future.In the following, we always assume that an on-line algorithm has a strong lookahead of�xed size l � 1. If a request sequence � = �(1); �(2); : : : ; �(m) is given, then for all t � 1 wede�ne a value �(t). If card(f�(t); �(t+ 1); : : : ; �(m)g) < l + 1 then let �(t) = m; otherwiselet �(t) = minft0 > tjcard(f�(t); �(t+ 1); : : : ; �(t0)g) = l + 1g: The lookahead L(t) at time t isde�ned as L(t) = f�(s)js = t; t+ 1; : : : ; �(t)g:We say that a page x is in the lookahead at time t if x 2 L(t).The remainder of this paper is an in-depth study of paging with strong lookahead. Stronglookahead is the �rst realistic model of lookahead that also reduces the competitive factors ofon-line paging algorithms. In Section 2 we consider deterministic on-line algorithms and presenta variant of the algorithm LRU that, given a strong lookahead of size l, where l � k � 2,3



achieves a competitive factor of (k � l). We also show that no deterministic on-line pagingalgorithm with strong lookahead l, l � k � 2, can be better than (k � l)-competitive. Thus ourproposed algorithm is optimal. Furthermore, we give another variant of the algorithm LRU withstrong lookahead l which is (k� l+1)-competitive and hence almost optimal. Interestingly, thisalgorithm does not exploit full lookahead but rather serves the request sequence in a series ofblocks. Thus the algorithm takes into account that in practice, requests often arrive in blocks.Section 3 addresses randomized on-line paging algorithms with strong lookahead. We prove thata modi�cation of the MARKING algorithm with strong lookahead l, l � k � 2, is 2H(k � l)-competitive. This competitiveness is within a factor of 2 of optimal. In particular, we show thatno randomized on-line paging algorithm with strong lookahead l, l � k � 2, can be better thanH(k � l)-competitive. Furthermore we present an extremely simple randomized on-line pagingalgorithm with strong lookahead l, which is (k � l + 1)-competitive.2 Deterministic paging with strong lookaheadUnless otherwise stated, we assume in the following that all our paging algorithms are lazyalgorithms, i.e., they only evict a page on a fault.Let k � 3. We consider the important case that an on-line paging algorithm has a stronglookahead of size l � k � 2. The on-line paging algorithms we present are extensions of thealgorithm LRU to our model of strong lookahead.Algorithm LRU(l): On a fault execute the following steps. Among the pages in fast memorywhich are not contained in the present lookahead, determine the page whose last request occurredleast recently. Evict this page and load the requested page.Theorem 1 Let l � k�2. The algorithm LRU(l) with strong lookahead l is (k� l)-competitive.Now we prove this theorem. Let � = �(1); �(2); : : : ; �(m) be a request sequence of length m.We assume without loss of generality that LRU(l) and OPT start with an empty fast memoryand that on the �rst k faults, both LRU(l) and OPT load the requested page into the fastmemory. Furthermore we assume that � contains at least l + 1 distinct pages. The followingproof consists of three main parts. First, we introduce the potential function we use to analyzeLRU(l). In the second part, we partition the request sequence � into a series of phases and then,in the third part, we bound LRU(l)'s amortized cost using that partition.1. The potential functionWe introduce some basic notations. For t = 1; 2; : : : ; �(1)�1, let �(t) = 1 and for t = �(1); �(1)+1; : : : ; m, let �(t) = maxft0 < tjcard(f�(t0); �(t0+ 1); : : : ; �(t)g) = l+ 1g:For t � �(1), �(t) is the most recent point of time such that the subsequence �(�(t)); �(�(t) +1); : : : ; �(t) contains l + 1 distinct pages. De�neM(t) = f�(s)js = �(t); �(t) + 1; : : : ; tg:4



For a given time t, the set M(t) contains the last l+ 1 requested pages.For t = 1; 2; : : : ; m, let SLRU(l)(t) be the set of pages contained in LRU(l)'s fast memory afterrequest t, and let SOPT (t) be the set of pages contained in OPT's fast memory after requestt. SLRU(l)(0) and SOPT (0) denote the sets of pages which are initially in fast memory, i.e.,SLRU(l)(0) = SOPT (0) = ;. For the analysis of the algorithm we assign weights to all pages.These weights are updated after each request. Let w(x; t) denote the weight of page x afterrequest t, 1 � t � m. The weights are set as follows. If x =2 SLRU(l)(t) or x 2 L(t), thenw(x; t) = 0:Let j = card(SLRU(l)(t) n L(t)). Assign integer weights from the range [1; j] to the pages inSLRU(l)(t) n L(t) such that any two pages x; y 2 SLRU(l)(t) nL(t) satisfyw(x; t) < w(y; t)i� the last request to x occurred earlier than the last request to y. For t = 1; 2; : : : ; m, letS(t) = SLRU(l)(t) n fM(t) [ L(t) [ SOPT (t)g:We now de�ne the potential function:�(t) = Xx2S(t)w(x; t):Intuitively, SLRU(l)(t) n SOPT (t) contains those pages which cause LRU(l) to have a highercost than OPT. Instead of the pages x 2 SLRU(l)(t) n SOPT (t), OPT can store pages in itsfast memory which are not contained in SLRU(l)(t) but are requested in the future. Pages inSLRU(l)(t) n SOPT (t) which are contained in L(t)[M(t) do not contribute to �(t). A page x inSLRU(l)(t) n SOPT (t) with x 2 L(t) cannot increase LRU(l)'s cost because x is requested in thenear future. By neglecting the pages in M(t) we can establish the property that each page canonly cause an increase in potential of at most k � l � 1, cf. Lemma 2. The weight w(x; t) of apage x 2 S(t) equals the number of faults that LRU(l) must incur before it can evict x.2. The partitioning of the request sequenceWe will partition the request sequence � into phases, numbered from 0 to p for some p, suchthat phase 0 contains at most l+ 1 distinct pages and phase i, i = 1; 2; : : : ; p, has the followingtwo properties. Let tbi and tei denote the beginning and the end of phase i, respectively.Property 1: Phase i contains exactly l+ 1 distinct pages, i.e.,card(f�(tbi); �(tbi + 1); : : : ; �(tei )g) = l + 1:Property 2: For all x 2 SLRU(l)(tei�1) n fL(tbi) [ SOPT (tei�1)g,w(x; tei ) � k � l� 2:Property 2 will be crucial when bounding LRU(l)'s amortized cost.5



In the following, we describe how to decompose �. We assume that LRU(l) and OPT havealready served �. We partition the request sequence starting at the end of �. Suppose that wehave already constructed phases P (i + 1); P (i+ 2); : : : ; P (p). We show how to generate phaseP (i). Let tei = tbi+1�1. (We let tep = m at the beginning of the decomposition.) Now set t = �(tei )and compute SLRU(l)(t� 1) n L(t). If SLRU(l)(t � 1) n L(t) 6= ;, then let y be the most recentlyrequested page in SLRU(l)(t � 1) n L(t). We consider two cases. If SLRU(l)(t � 1) n L(t) = ;or if SLRU(l)(t � 1) n L(t) 6= ; and y 2 SOPT (t � 1), then let tbi = t and call the i-th phaseP (i) = �(tbi); �(tbi + 1); : : : ; �(tei ) a type 1 phase. Otherwise (if SLRU(l)(t � 1) n L(t) 6= ; andy =2 SOPT (t� 1)) let t0, t0 < t, be the time when OPT evicted page y most recently. Let tbi = t0and call the i-th phase P (i) = �(tbi); �(tbi + 1); : : : ; �(tei) a type 2 phase. The detailed algorithmis given below.1. i := m;2. tei := m;3. repeat4. t := �(tei );5. if SLRU(l)(t� 1) n L(t) 6= ; then6. Let y be the most recently requested page in SLRU(l)(t� 1) n L(t);7. endif;8. if (SLRU(l)(t� 1) n L(t) = ;) or (SLRU(l)(t� 1) n L(t) 6= ; and y 2 SOPT (t � 1)) then9. Let tbi = t and let P (i) = �(tbi); �(tbi + 1); : : : ; �(tei) be the i-th phase;10. Call P (i) a type 1 phase;11. else12. Determine the largest t0 < t, such that OPT evicts page y at time t0;13. Let tbi = t0 and let P (i) = �(tbi); �(tbi + 1); : : : ; �(tei ) be the i-th phase;14. Call P (i) a type 2 phase;15. endif;16. i := i� 1;17. tei := tbi+1 � 1;18. until tei = 0;19. Number the phases from 0 to p;Lemma 1 The partition generated above satis�es the following conditions.a) Phase P (0) contains at most l + 1 distinct pages.b) Every phase P (i), 1 � i � p, has Property 1 and Property 2.Proof: First we prove part a). We show that P (0) is a type 1 phase. This immediately impliesthat P (0) contains at most l + 1 pages. If P (0) was a type 2 phase, then OPT would evict apage on the �rst request �(1). However, this is impossible because initially the fast memoriesare empty and on the �rst k faults both LRU(l) and OPT load the requested page into the fastmemory. 6



Now we prove part b) of the lemma. Consider an arbitrary phase P (i), 1 � i � p. Lett = �(tei ). If SLRU(l)(t � 1) n L(t) 6= ;, then let y be the most recently requested page inSLRU(l)(t� 1) nL(t) and let t00, t00 < t, be the time when y was requested most recently. If P (i)is a type 2 phase, then let t0, t0 � t � 1, be the time when OPT evicted y most recently. (Sincey =2 SOPT (t� 1), we have t00 < t0 � t � 1.)We show that P (i) contains exactly l+1 pages. For a type 1 phase there is nothing to show.Suppose P (i) is a type 2 phase. Then tbi = t0. Let s 2 [t0; t�1] be arbitrary and let x be the pagerequested at time s. We need to show that x is requested in the interval [t; tei ], i.e., that x 2 L(t).So assume x =2 L(t). Then by the de�nition of y, x =2 SLRU(l)(t�1), i.e., x was evicted by LRU(l)at some time s0 2 [s+1; t�1]. Since y was not evicted by LRU(l) at time s0 and y's most recentrequest was at time t00 < s, we must have y 2 L(s0) � f�(s0); : : : ; �(t � 1); �(t); : : : ; �(tei )g =f�(s0); : : : ; �(t� 1)g [ L(t). But y =2 f�(s0); : : : ; �(t� 1)g and y =2 L(t), by the de�nition of t00and y. Thus x =2 L(t) is impossible. We conclude that P (i) contains exactly l+1 distinct pages.It remains to prove that P (i) has Property 2. Consider an arbitrary page x 2 SLRU(l)(tei�1)nfL(tbi) [ SOPT (tei�1)g. If w(x; tei) = 0, then the property clearly holds. Therefore assumew(x; tei) � 1. By Property 1, L(tbi) contains all pages which are requested in P (i). Sincew(x; tei) � 1, we have x 2 SLRU(l)(tei ) n L(tei ) and hence x =2 L(tbi) [ L(tei ) � L(s) for alls 2 [tbi ; tei ]. Thus, x was a candidate for eviction by LRU(l) throughout P (i), but was notevicted. This implies immediately that all pages requested in P (i), i.e. all pages in L(tbi), alsobelong to SLRU(l)(tei ).We next show that y 2 SLRU(l)(tei ). If P (i) has type 1, then y 2 SOPT (tei�1) and hencey 6= x. Furthermore, y was requested more recently than x. Since x was not evicted by LRU(l)during P (i), we conclude y 2 SLRU(l)(tei ). If P (i) has type 2, then y was evicted by OPT at tbiand hence y 2 SOPT (tei�1). This implies y 6= x. Also, by the de�nition of y, y =2 L(t) = L(tbi).Since y was requested more recently than x, it follows, as above, y 2 SLRU(l)(tei ). We concludeL(tbi) [ fyg � SLRU(l)(tei ) and hence we have identi�ed l+ 2 pages in SLRU(l)(tei ) which, at timetei , were requested later than x. At time tei , each of these pages has a weight of 0 or a weightwhich is greater than that of x. Thus, w(x; tei) � k � l � 2. 2In the remainder of this proof it is not important how the partition of � is constructed. Weonly use the fact that we have a partition satisfying Property 1 and Property 2.3. Bounding LRU(l)'s amortized costUsing the partition of � generated above, we will evaluate LRU(l)'s amortized cost on �. Firstwe will bound the increase in potential Pmt=1�(t) � �(t � 1). Then we will estimate LRU(l)'sactual cost in each phase of �. For t = 1; 2; : : : ; m, letN(t) = S(t) n S(t� 1):We set M(0) = L(0) = ; and S(0) = SLRU(l)(0) n fM(0) [ L(0) [ SOPT (0)g, which is used inthe de�nition of N(1) = S(1) n S(0). 7



We present two lemmas which are crucial in analyzing the change in potential �(t)��(t�1),1 � t � m. Note that�(t)� �(t� 1) = Xx2S(t)w(x; t)� Xx2S(t�1)w(x; t� 1)= Xx2N(t)w(x; t) + Xx2S(t�1)\S(t)(w(x; t)� w(x; t� 1))� Xx2S(t�1)nS(t)w(x; t� 1):Lemma 2 Let 1 � t � m. If x 2 N(t), then w(x; t) � k � l � 1.Proof: By the de�nition of N(t), we have x 2 SLRU(l)(t) n fM(t) [ L(t) [ SOPT (t)g. Sincex =2 M(t), page x is not requested in the interval [�(t); t] and hence x 2 SLRU(l)(�(t) � 1). Wehave x =2 M(t) [ L(t) which implies x =2 L(s) for all s with �(t) � s � t. Thus, x has been acandidate for eviction by LRU(l) throughout the interval [�(t); t], but was not evicted. It followsthat all pages in M(t) must be in SLRU(l)(t). Note thatM(t) contains l+1 pages because OPTdoes not evict a page before the (k + 1)-st fault. At time t, all pages in M(t) have a weight of0 or a weight which is greater than w(x; t). Thus w(x; t) � k � l� 1. 2Lemma 3 Let 1 � t � m and x 2 S(t�1)\S(t). Then x's weight satis�es w(x; t�1) � w(x; t).In particular, if LRU(l) incurs a fault at time t, then w(x; t� 1) > w(x; t).Proof: First we show w(x; t � 1) � w(x; t). Note that by the de�nition of S(t � 1) and S(t),we have x 2 SLRU(l)(t � 1) n L(t � 1) and x 2 SLRU(l)(t) n L(t). Hence w(x; t � 1) � 1 andw(x; t) � 1. In order to show w(x; t� 1) � w(x; t), it su�ces to prove the following statements.1) Let y, y 6= x, be a page which satis�es w(y; t � 1) = 0 and w(y; t) > 0. Then w(x; t) <w(y; t).2) Let y, y 6= x, be a page which satis�es w(y; t� 1) > 0 and w(x; t� 1) < w(y; t� 1). Thenw(y; t) = 0 or w(x; t) < w(y; t).We prove these statements. If a page y satis�es w(y; t � 1) = 0 and w(y; t) > 0, then y mustbe requested at time t � 1 (and evicted by OPT at time t). Thus, at time t, y has the highestweight among all pages in SLRU(l)(t) n L(t). Hence w(x; t) < w(y; t). Suppose a page y satis�esw(y; t� 1) > 0 and 1 � w(x; t� 1) < w(y; t� 1). This implies that at time t� 1, x's most recentrequest is longer ago than y's most recent request. We conclude that this statement must alsohold at time t because x is not requested at time t. Thus, if w(y; t) > 0, then w(x; t) < w(y; t).This completes the proof that w(x; t� 1) � w(x; t).Now suppose that LRU(l) incurs a fault at time t. Then, at time t, LRU(l) evicts a pagez, z 6= x, whose last request occurred earlier than x's last request. Hence 1 � w(z; t � 1) <w(x; t� 1). Since the statements 1) and 2) hold, x's weight must decrease after z is evicted, i.e.,w(x; t� 1) > w(x; t). 2Lemma 2 implies that at any time t, 1 � t � m, a page x 2 N(t) can cause an increase inpotential of at most k � l � 1. Thus, for every t, 1 � t � m, we have�(t)� �(t� 1) = (k� l � 1)card(N(t))�W (t); (1)8



where W (t) = W 1(t) +W 2(t) +W 3(t) andW 1(t) = Xx2N(t)(k � l� 1� w(x; t))W 2(t) = Xx2S(t�1)\S(t)(w(x; t� 1)� w(x; t))W 3(t) = Xx2S(t�1)nS(t)w(x; t� 1):For all t = 1; 2; : : : ; m, we haveW 1(t) � 0; W 2(t) � 0; W 3(t) � 0: (2)Clearly, W 3(t) � 0. The inequalities W 1(t) � 0 and W 2(t) � 0 follow from Lemma 2 andLemma 3, respectively.Next we estimate Pmt=1 card(N(t)) and derive a bound on Pmt=1�(t) � �(t � 1). To eachelement x 2 N(t) we assign the most recent eviction of x by OPT. More formally, letX = f(x; t) 2 ( m[t=1N(t))� [1; m]jx 2 N(t)g:We de�ne a function f : X �! [1; m]. For (x; t) 2 X we de�nef(x; t) = maxfs � tjOPT evicts page x at time sg:Note that f is well-de�ned.We prove two properties of the function f . Part b) of the following lemma will be usefulwhen bounding LRU(l)'s actual cost in each phase of �.Lemma 4 a) The function f is injective.b) Let (x; t) 2 X and f(x; t) = t0. Let t 2 [tbi ; tei ], 0 � i � p. If i = 0, then t0 2 [tb0; te0]. Ifi � 1, then t0 2 [tbi�1; tei ].Proof: First we prove part a). Consider two distinct elements (x; t1) 2 X and (y; t2) 2 X . Weshow that f(x; t1) 6= f(y; t2). If x 6= y, then there is nothing to prove. So assume x = y and lett1 < t2. We have x 2 N(t1) and x 2 N(t2). Thusx 2 S(t1) = SLRU(l)(t1) n fM(t1) [ L(t1) [ SOPT (t1)g;x 2 S(t2) = SLRU(l)(t2) n fM(t2) [ L(t2) [ SOPT (t2)gand x =2 S(t2 � 1) = SLRU(l)(t2 � 1) n fM(t2 � 1) [ L(t2 � 1) [ SOPT (t2 � 1)g:Since x 2 SLRU(l)(t2) n fM(t2) [ L(t2)g, we have x 2 SLRU(l)(t2 � 1) n L(t2 � 1). This impliesx 2 M(t2 � 1) [ SOPT (t2 � 1) because x =2 S(t2 � 1). Note that x =2 M(t1) [ SOPT (t1). We9



conclude that page x must be requested at some time t 2 [t1+1; t2�1]. Hence, OPT must evictx at some time t0 2 [t1 + 2; t2]. Thus f(x; t1) < f(x; t2).Now we show part b) of the lemma. Note that t0 = f(x; t) � t � tei . If i = 0 or i = 1, thent0 2 [tb0; te0] or t0 2 [tb0; te1], respectively, and part b) is proved. So suppose i � 2. We assumet0 < tbi�1 and show that this assumption implies x 2 S(t� 1). This is a contradiction becausex 2 N(t) = S(t) n S(t � 1). By the de�nition of t0, the page x is not requested in the interval[t0; t] and x =2 SOPT (t0). It follows x =2 SOPT (s) for all s 2 [t0; t]. Since x 2 S(t), we havex =2 L(t). Thus, for all s 2 [t0; t], x is not contained in f�(s); �(s+ 1); : : : ; �(t)g [ L(t) � L(s).By Property 1, phase P (i � 1) contains l + 1 distinct pages. Since x is not requested in theinterval [t0; t] and t0 < tbi�1 < tei�1 < t, it follows x =2 M(s) for all s 2 [tei�1; t]. Note thatx 2 SLRU(l)(t� 1) because x 2 S(t) � SLRU(l)(t) and x is not requested at time t. We concludethat x 2 SLRU(l)(t� 1) n fM(t� 1) [ L(t� 1)[ SOPT (t� 1)g = S(t� 1):We obtain a contradiction because x 2 N(t). Thus t0 � tbi�1. The proof of the lemma iscomplete. 2Let TOPT be the set of all t 2 [1; m] such that OPT evicts a page at time t. Note thatCOPT (�) = card(TOPT). Let T 1OPT = ff(x; t)j(x; t) 2 Xg. By Lemma 4, f is injective andhence mXt=1 card(N(t)) = card(X) = card(T 1OPT):Thus, by equation (1), we obtainmXt=1�(t)� �(t� 1) = (k � l � 1)card(T 1OPT)� mXt=1W (t): (3)Now we bound LRU(l)'s actual cost in each phase of �. For i = 0; 1; : : : ; p, let CLRU(l)(i) bethe actual cost LRU(l) incurs in serving phase P (i), and let COPT (i) be the cost OPT incurs inserving P (i). Furthermore, let T 2OPT = TOPT n T 1OPTand, for i = 0; 1; : : : ; p, let T 2OPT (i) = ft 2 T 2OPT jtbi � t � tei g:Lemma 5 a) CLRU(l)(0) = COPT (0)b) For i = 1; 2; : : : ; p,CLRU(l)(i) � COPT (i) + card(T 2OPT(i� 1)) + teiXt=tbi W (t):10



Proof: First we prove part a) of the lemma. Phase P (0) contains at most l+ 1 distinct pages.On the �rst k � l + 1 faults, both LRU(l) and OPT load the requested page into fast memory.Thus, during P (0), LRU(l) and OPT incur the same cost, i.e.,CLRU(l)(0) = COPT (0):In the proof of part b), we consider a �xed i 2 [1; p]. If CLRU(l)(i) = 0, then the inequalityclearly holds because, by line (2), W (t) � 0 for all t 2 [tbi ; tei ]. So suppose CLRU(l)(i) � 1. Let~C(i) = card(SLRU(l)(tei�1) n fL(tbi) [ SOPT (tei�1)g):In the following we prove that the inequalitiesCLRU(l)(i) � COPT (i) + ~C(i) (4)and ~C(i) � card(T 2OPT(i� 1)) + teiXt=tbi W (t) (5)hold. These two inequalities imply part b).First we prove inequality (4). At the beginning of phase P (i), there are card(SLRU(l)(tei�1)\SOPT (tei�1)) pages which are contained in LRU(l)'s as well as by OPT's fast memory. Hence, atthe beginning of P (i), OPT's fast memory contains at most card(SOPT(tei�1) nSLRU(l)(tei�1)) =card(SLRU(l)(tei�1)nSOPT (tei�1)) pages which are in L(tbi) but which are not contained in LRU(l)'sfast memory. Thus, during phase P (i), LRU(l) incurs at mostcard(SLRU(l)(tei�1) n SOPT (tei�1))� card((SLRU(l)(tei�1) n SOPT (tei�1))\ L(tbi)) =card(SLRU(l)(tei�1) n fL(tbi) [ SOPT (tei�1)g)faults more than OPT, i.e., CLRU(l)(i) � COPT (i) + ~C(i):Next we prove inequality (5). We introduce some notations. Let t 2 [tbi ; tei ]. For x 2 N(t) letW 1(x; t) = k � l � 1� w(x; t):For x 2 S(t� 1)\ S(t) let W 2(x; t) = w(x; t� 1)� w(x; t)and for x 2 S(t� 1) n S(t) let W 3(x; t) = w(x; t� 1):11



Note that W 1(t) = Xx2N(t)W 1(x; t)W 2(t) = Xx2S(t�1)\S(t)W 2(x; t)W 3(t) = Xx2S(t�1)nS(t)W 3(x; t):For any x 2 N(t) (x 2 S(t� 1) \ S(t), x 2 S(t� 1) n S(t)) we haveW 1(x; t) � 0 (W 2(x; t) � 0; W 3(x; t) � 1): (6)The inequality W 1(x; t) � 0 follows from Lemma 2. Lemma 3 implies W 2(x; t) � 0. If x 2S(t� 1) n S(t), then x 2 SLRU(l)(t� 1) n L(t� 1) and hence 1 � w(x; t� 1) = W 3(x; t).We sketch the main idea of the proof of inequality (5). We show that for each page x 2SLRU(l)(tei�1) n fL(tbi) [ SOPT (tei�1)g one of the following two statements holds.1) There exists a t0 2 T 2OPT (i� 1) such that OPT evicts page x at time t0.2) There exists a time t0 2 [tbi ; tei ] and a j 2 f1; 2; 3g such that W j(x; t0) � 1.These statements, together with line (6), imply the correctness of inequality (5).Consider a page x 2 SLRU(l)(tei�1) n fL(tbi)[SOPT (tei�1)g. We distinguish between two maincases.Case 1: For t = tei�1; tbi ; tbi + 1; : : : ; tei , x =2 S(t)We prove that statement 1) holds. Since x 2 SLRU(l)(tei�1) n fL(tbi) [ SOPT (tei�1)g, we havex =2 SOPT (tei�1). Let t0 = maxfs � tei�1jOPT evicts page x at time sg: In the following we showthat t0 � tbi�1 and t0 =2 T 1OPT , which implies t0 2 T 2OPT (i� 1). If i = 1, then t0 � 1 = tb0 = tbi�1.So let i � 2 and suppose t0 < tbi�1. By the de�nition of t0, x is not requested in the interval[t0; tei�1]. Thus, x is not contained in phase P (i � 1). By Property 1, phase P (i � 1) containsl+ 1 distinct pages, and hence x =2M(tei�1). We have x 6= �(tei�1) and x =2 L(tbi), which impliesx =2 L(tei�1). Since x 2 SLRU(l)(tei�1) n SOPT (tei�1), we concludex 2 SLRU(l)(tei�1) n fM(tei�1) [ L(tei�1) [ SOPT (tei�1)g = S(tei�1):We obtain a contradiction because x =2 S(t) for all t 2 [tei�1; tei ]. Thus t0 � tbi�1.Next we show t0 =2 T 1OPT . We have to prove that there exists no pair (x; s) 2 X satisfyingt0 � s � m and f(x; s) = t0. Assume that there is such a pair. Since t0 � tei�1, part b) ofLemma 4 implies s � tei . We have x =2 S(t) for all t 2 [tei�1; tei ] and hence x =2 N(t) for allt 2 [tei�1; tei ]. Thus t0 � s < tei�1. The page x is contained in N(s), i.e., it is contained inS(s). This implies x =2 M(s). By the de�nition of t0, x is not requested in [t0; tei�1] and hencex =2M(tei�1). Since x 6= �(tei�1) and x =2 L(tbi), we have x =2 L(tei�1). Thusx 2 SLRU(l)(tei�1) n fM(tei�1) [ L(tei�1) [ SOPT (tei�1)g = S(tei�1)12



because x 2 SLRU(l)(tei�1) n SOPT (tei�1). As above, we obtain a contradiction.Case 2: There exists a t, tei�1 � t � tei , such that x 2 S(t)In this case we show that the above statement 2) holds. Let tmin be the smallest t 2 [tei�1; tei ]such that x 2 S(t).Case 2.1: tmin = tei�1Let t00 be the time when LRU(l) incurs the �rst fault during phase P (i). We consider w(x; t00).If w(x; t00) = 0, then x =2 S(t00). Hence there must exist a t0, tbi � t0 � t00, such that x 2S(t0 � 1) n S(t0). Thus W 3(x; t0) � 1. Now suppose w(x; t00) � 1. Then x 2 SLRU(l)(t00) n L(t00).We have x 2 S(tei�1). Since x =2 L(tbi), the page is not requested in the interval [tbi ; t00]. Weeasily verify that for all s 2 [tei�1; t00], x 2 SLRU(l)(s) n SOPT (s) and x =2 M(s) [ L(s). Thusx 2 S(t00 � 1)\ S(t00). Now Lemma 3 implies W 2(x; t00) � 1.Case 2.2: tmin > tei�1If w(x; tmin) < k � l � 1, then W 1(x; tmin) � 1. Suppose w(x; tmin) = k � l � 1. By Property 2,w(x; tei) � k � l � 2. This implies that if x 2 S(s) for all s 2 [tmin; tei ], then there must exist atime t0, tmin < t0 � tei , such that W 2(x; t0) � 1. If x =2 S(s) for some s 2 [tmin; tei ], then theremust exist a time t0 2 [tmin + 1; tei ] with x 2 S(t0 � 1) n S(t0) and hence W 3(x; t0) � 1.The proof of Lemma 5 is complete. 2Using equation (3) and Lemma 5, it is easy to �nish the proof of Theorem 1. We estimateLRU(l)'s amortized cost. By equation (3) we haveCLRU(l)(�) + �(m)� �(0) = CLRU(l)(�) + mXt=1�(t)� �(t� 1)= CLRU(l)(�) + (k � l� 1)card(T 1OPT)� mXt=1W (t):Lemma 5 implies thatCLRU(l)(�) + �(m)� �(0) = pXi=0CLRU(l)(i)� mXt=1W (t) + (k � l� 1)card(T 1OPT)� pXi=0COPT (i) + p�1Xi=0 card(T 2OPT(i)) + mXt=tb1W (t)� mXt=1W (t) + (k � l � 1)card(T 1OPT):Line (2) implies that W (t) � 0 for all t 2 [tb0; te0]. HenceCLRU(l)(�) + �(m)� �(0) � COPT (�) + card(T 2OPT) + (k � l � 1)card(T 1OPT)� COPT (�) + (k � l � 1)card(TOPT)= (k � l)COPT(�):The proof of Theorem 1 is complete. 13



Next we present another on-line algorithm with strong lookahead. This algorithm does notuse full lookahead but rather serves the request sequence in a series of blocks.Algorithm LRU(l)-blocked: Serve the request sequence in a series of blocks B(1); B(2); : : :,where B(1) = �(1); �(2); : : : ; �(�(1)) and B(i) = �(tei�1 + 1); �(tei�1 + 2); : : : ; �(�(tei�1 + 1)) fori � 2. Here tei�1 denotes the end of block B(i�1). If there occurs a fault while B(i) is processed,then the following rule applies. Among the pages in fast memory which are not contained inB(i), determine the page whose last request occurred least recently. Evict that page.LRU(l)-blocked has the advantage that it updates its information on future requests onlyonce during each block. Thus it can respond to requests faster that LRU(l). Furthermore,LRU(l)-blocked takes into account that in practice requests often arrive in blocks. Interestingly,this simpler algorithm is only slightly weaker than LRU(l).Theorem 2 Let l � k� 2. The algorithm LRU(l)-blocked with strong lookahead l is (k� l+1)-competitive.Proof: We assume that the request sequence consists of b blocks B(1); B(2); : : : ; B(b). Fori = 1; 2; : : : ; b, let tbi and tei denote the beginning and the end of block B(i), respectively. Againwe assume that LRU(l)-blocked and OPT start with an empty fast memory. On the �rst kfaults, both LRU(l)-blocked and OPT load the requested page into fast memory. We assumethat � contains at least l+ 1 distinct requests. The following proof is very similar to the proofof Theorem 1.The potential function we use to analyze LRU(l)-blocked resembles the function we intro-duced in the proof of Theorem 1. For t = 1; 2; : : : ; m, the values �(t) and the sets M(t) arede�ned as in the previous proof. Let SLRU(l)(t) be the set of pages contained in LRU(l)-blocked'sfast memory after request t, and let SOPT (t) be the set of pages contained in OPT's fast memoryafter request t, 1 � t � m. SLRU(l)(0) and SOPT (0) denote the sets of pages which are initiallyin fast memory, i.e., SLRU(l)(0) = SOPT (0) = ;. For t = 1; 2; : : : ; m, we de�ne values (t). Set(t) = i i� tbi � t � tei . Let SB(t) be the set of pages that are requested during block B((t)).Again, we assign weights to all pages. Let w(x; t) denote the weight of page x after request t,1 � t � m. If x =2 SLRU(l)(t) or if x 2 SB(t) then w(x; t) = 0. Let j = card(SLRU(l)(t) n SB(t)).Assign integer weights from the range [1; j] to the pages in SLRU(l)(t) n SB(t) such thatw(x; t) < w(y; t)i� the last request to x occurred earlier than the last request to y.For t = 1; 2; : : : ; m, letS(t) = SLRU(l)(t) n fM(t) [ SB(t) [ SOPT (t)g:The potential function is de�ned as �(t) = Xx2S(t)w(x; t):14



In the following, we evaluate LRU(l)-blocked's amortized cost on the request sequence �.First we derive a bound on the increase in potential Pmt=1 �(t)� �(t� 1). Then we determineLRU(l)-blocked's actual cost in each block of �.For t = 1; 2; : : : ; m let N(t) = S(t) n S(t� 1):Again, we set M(0) = SB(0) = ; and S(0) = SLRU(l)(0) n fM(0)[ SB(0)[ SOPT (0)g, which weneed in the de�nition of N(1) = S(1) n S(0).Lemma 6 Let 1 � t � m. If x 2 N(t), then w(x; t) � k � l � 1.Proof: The de�nition of N(t) implies x 2 SLRU(l)(t) n fM(t) [ SB(t) [ SOPT (t)g and hencex =2 M(t). We show that all pages y 2 M(t) satisfy y 2 SLRU(l)(t). Suppose t 2 [tbi ; tei ],1 � i � b. Consider an arbitrary y 2 M(t). If y is requested in the interval [tbi ; t], then thede�nition of the algorithm LRU(l)-blocked implies y 2 SLRU(l)(t). Suppose y is not requestedin the interval [tbi ; t]. Then i � 2 and y must be requested at some time t0 2 [�(t); tei�1]. Sinceblock B(i � 1) contains l + 1 distinct pages, we have tbi�1 � �(t). Thus, by the de�nitionof the algorithm LRU(l)-blocked, y 2 SLRU(l)(tei�1). We have x =2 M(t), and hence x is notrequested in the interval [�(t); t]. It follows that x 2 SLRU(l)(�(t)� 1) (because x 2 SLRU(l)(t))and that at any time s, tbi � s � t, x's most recent request is longer ago than y's most recentrequest. Since x =2 SB(t), x is a candidate for eviction throughout the interval [tbi ; t], but is notevicted. Hence, y cannot be evicted in the interval [tbi ; t] and must be in SLRU(l)(t). The setM(t) contains l+1 distinct pages, and each of these pages was requested more recently than x.Thus w(x; t) � k � l� 1. 2Lemma 7 Let 1 � t � m and x 2 S(t�1)\S(t). Then x's weight satis�es w(x; t�1) � w(x; t).In particular, if LRU(l)-blocked incurs a fault at time t, then w(x; t� 1) > w(x; t).Proof: The lemma can be shown in the same way as Lemma 3. Only the proof of the state-ment 1) is slightly di�erent: Consider a page y, y 6= x, which satis�es w(y; t � 1) = 0 andw(y; t) > 0. Suppose t 2 [tbi ; tei ], 1 � i � b. The inequality w(y; t) > 0 implies that y is notrequested in block B(i). We have y 2 SLRU(l)(t). Thus, y 2 SLRU(l)(t � 1) because y is notrequested at time t. Hence, equation w(y; t� 1) = 0 implies y 2 SB(t � 1), i.e., y is requestedin the block which contains time t � 1. It follows i � 2, t = tbi and t� 1 = tei�1. Note that x isneither requested in block B(i � 1) nor in block B(i) because w(x; t� 1) � 1 and w(x; t) � 1.We conclude that at time t, x's most recent request is longer ago than y's last request. Thusw(x; t) < w(y; t). 2Lemma 6 implies that for every t, 1 � t � m,�(t)� �(t� 1) = (k � l)card(N(t))�W (t); (7)15



where W (t) = W 1(t) +W 2(t) +W 3(t)and W 1(t) = Xx2N(t)(k � l� w(x; t))W 2(t) = Xx2S(t�1)\S(t)(w(x; t� 1)� w(x; t))W 3(t) = Xx2S(t�1)nS(t)w(x; t� 1):For t = 1; 2; : : : ; m we have W 1(t) � 0; W 2(t) � 0; W 3(t) � 0: (8)Obviously, W 3(t) � 0. The inequalities W 1(t) � 0 and W 2(t) � 0 follow from Lemma 6 andLemma 7, respectively.Our next goal is to determinePmt=1 card(N(t)) and to boundPmt=1�(t)��(t�1). We de�nea set X and a function f in exactly the same way as in the proof of Theorem 1.Using a similar analysis as in the proof of Lemma 4 we are able to showLemma 8 a) The function f is injective.b) Let (x; t) 2 X and f(x; t) = t0. Let t 2 [tbi ; tei ], 1 � i � b. If i = 1, then t0 2 [tb1; te1]. Ifi � 2, then t0 2 [tbi�1; tei ].As in the proof of Theorem 1, let TOPT be the set of all t 2 [1; m] such that OPT evicts apage at time t. Again, we have COPT (�) = card(TOPT). Let T 1OPT = ff(x; t)j(x; t) 2 Xg. Sincethe function f is injective (see Lemma 8), we have Pmt=1 card(N(t)) = card(X) = card(T 1OPT).Hence, equation (7) impliesmXt=1�(t)� �(t� 1) = (k � l)card(T 1OPT)� mXt=1W (t): (9)Next we bound LRU(l)'s actual cost in each block of �. For i = 1; 2; : : : ; b, let CLRU(l)(i) bethe actual cost LRU(l)-blocked incurs in serving block B(i), and let COPT (i) be the cost OPTincurs in serving B(i). Let T 2OPT = TOPT n T 1OPTand, for i = 1; 2; : : : ; b, let T 2OPT (i) = ft 2 T 2OPT jtbi � t � tei g:16



Lemma 9 a) CLRU(l)(1) = COPT (1)b) For i = 2; 3; : : : ; b,CLRU(l)(i) � COPT (i) + card(T 2OPT(i� 1)) + teiXt=tbi W (t):Proof: Part a) of the lemma can be shown in the same way as the corresponding statement ofLemma 5. We prove part b). Fix an i 2 [2; b]. If CLRU(l)(i) = 0, then there is nothing to showbecause W (t) � 0 for all t 2 [tbi ; tei ] (see line (8)). So assume CLRU(l)(i) � 1. Let~C(i) = card(SLRU(l)(tei�1) n fSB(tbi ) [ SOPT (tei�1)g):During block B(i), LRU(l)-blocked incurs at most ~C(i) faults more than OPT, i.e.,CLRU(l)(i) � COPT (i) + ~C(i): (10)We show that the inequality ~C(i) � card(T 2OPT(i� 1)) + teiXt=tbi W (t) (11)holds. Inequalities (10) and (11) imply part b) of Lemma 9.We need some more notations. Let t 2 [tbi ; tei ]. For x 2 N(t) let W 1(x; t) = k � l � w(x; t):For x 2 S(t � 1) \ S(t) let W 2(x; t) = w(x; t � 1) � w(x; t) and for x 2 S(t � 1) n S(t) letW 3(x; t) = w(x; t� 1): We haveW 1(t) = Xx2N(t)W 1(x; t); W 2(t) = Xx2S(t�1)\S(t)W 2(x; t); W 3(t) = Xx2S(t�1)nS(t)W 3(x; t):Furthermore, for a page x 2 N(t) (x 2 S(t� 1)\ S(t), x 2 S(t� 1) n S(t)), we haveW 1(x; t) � 0 (W 2(x; t) � 0; W 3(x; t) � 1): (12)We prove inequality (11). Consider a page x 2 SLRU(l)(tei�1) n fSB(tbi ) [ SOPT (tei�1)g.Case 1: For t = tei�1; tbi ; tbi + 1; : : : ; tei , x =2 S(t)Using the same analysis as in the proof of Lemma 5 we can show that there exists a timet0 2 T 2OPT (i� 1) such that OPT evicts a page at time t0.Case 2: There exists a t, tei�1;� t � tei , such that x 2 S(t)We show that there exists a time t0 2 [tbi ; tei ] and a j 2 f1; 2; 3g such that W j(x; t0) � 1. Let tminbe the smallest t 2 [tei�1; tei ] such that x 2 S(t).Case 2.1: tmin = tei�1Let t00 be the time when LRU(l)-blocked incurs the �rst fault during block B(i). Again, we can17



apply the same analysis as in the proof of Lemma 5. If w(x; t00) = 0, then we can show thatthere exists a time t0, tbi � t0 � tei , such that W 3(x; t0) � 1. If w(x; t00) � 1, then we can proveW 2(x; t00) � 1.Case 2.2: tmin > tei�1By Lemma 6, w(x; tmin) � k � l� 1. Hence W 1(x; tmin) � 1.The above case analysis, together with line (12), implies inequality (11). The proof ofLemma 9 is complete. 2Let CLRU(l)(�) be the actual cost LRU(l) incurs in serving the request sequence �. Usingequation (9) and Lemma 9 we can easily proveCLRU(l)(�) + �(m)� �(0) � (k � l+ 1)COPT(�):The proof of Theorem 2 is complete. 2The following theorem shows that LRU(l) and LRU(l)-blocked are optimal and nearly opti-mal, respectively.Theorem 3 Let A be a deterministic on-line paging algorithm with strong lookahead l, wherel � k � 2. If A is c-competitive, then c � (k � l).Proof: Let S = fx1; x2; : : : ; xk+1g be a set of k+1 pages. We assume without loss of generalitythat A0s and OPT's fast memories initially contain x1; x2; : : : ; xk. Let SL = fx1; x2; : : : ; xlg. Weconstruct a request sequence � consisting of a series of phases. Each phase contains l+1 requeststo l+1 distinct pages. The �rst phase P (1) consists of requests to the pages in SL, followed bya request to the page xk+1 which is not in fast memory, i.e., P (1) = x1; x2; : : : ; xl; xk+1. Eachof the following phases P (i), i � 2, has the form P (i) = x1; x2; : : : ; xl; yi, where yi 2 S n SL ischosen as follows. Let zi 2 S be the page which is not in A's fast memory after the last requestof phase i� 1. If zi 2 S n SL, then set yi = zi. Otherwise, if zi 2 SL, yi is an arbitrary page inS nSL. The algorithm A incurs a cost of 1 in each phase. We show that during k� l successivephases, OPT's cost is at most 1. This proves the theorem. OPT always keeps x1; x2; : : : ; xl inits fast memory. Note that k � l successive phases contain at most k di�erent pages. If OPTincurs a fault on the last request in a given phase, then OPT can evict a page such that allpages in the next k � l � 1 phases remain in fast memory. 2So far, we have assumed k � 3 and l � k � 2, which, of course, is the interesting case. Notethat if l = k � 1 and the total number of di�erent pages in the memory system equals k + 1,then LRU(l) achieves a competitive factor of 1 because it behaves like Belady's optimal pagingalgorithm MIN [2]. 18



3 Randomized paging with strong lookaheadSuppose a randomized paging algorithm has a strong lookahead of size l. Again, we assumek � 3 and l � k � 2. The �rst algorithm we propose is a slight modi�cation of the MARKINGalgorithm due to Fiat et al. [5]. The MARKING algorithm proceeds in a series of phases. Duringeach phase a set of marked pages is maintained. At the beginning of each phase all pages areunmarked. Whenever a page is requested, that page is marked. On a fault, a page is chosenuniformly at random from among the unmarked pages in fast memory, and that page is evicted.A phase ends immediately before a fault, when there are k marked pages in fast memory. Atthat moment all marks are erased and a new phase is started.The modi�ed algorithm with strong lookahead l uses lookahead once during each phase.AlgorithmMARKING(l): At the beginning of each phase execute an initial step: Determinethe set S of pages which are in the present lookahead but not in fast memory. Choose card(S)pages uniformly at random from among the pages in fast memory which are not contained inthe current lookahead. Evict these pages and load the pages in S. After this initial step proceedwith the MARKING algorithm.Theorem 4 Let l � k � 2. The algorithm MARKING(l) with strong lookahead l is 2H(k � l)-competitive.Proof: The idea of the proof is the same as the idea of the original proof of the MARKINGalgorithm [5]. We assume without loss of generality that MARKING(l)'s and OPT`s fast mem-ories initially contain the same k pages. During each phase we compare the cost incurred byMARKING(l) to the cost incurred by the optimal algorithm OPT. Consider an arbitrary phase.We use the same terminology as Fiat et al. A page is called stale if it is unmarked but wasmarked in the previous phase, and clean if it is neither stale nor marked.Let c be the number of clean pages and s be the number of stale pages requested in thephase. Note that c + s = k. Fiat et al. prove that OPT has an amortized cost of at least c=2during the phase.We evaluate MARKING(l)'s cost during the phase. Serving c requests to clean pages ob-viously costs c. It remains to bound the expected cost for serving the stale pages. Let s1 bethe number of stale pages contained in the lookahead at the beginning of the phase and lets2 = s� s1. Then s1 + c � l+ 1 because every page in the lookahead is either clean or countedin s1. Thus s2 = s � s1 � k � c� (l + 1 � c) = k � l � 1. Note that serving the �rst s1 stalerequests does not incur any cost and that we just have to evaluate MARKING(l)'s cost on thefollowing s2 requests to stale pages. We determine the expected cost of the (s1 + j)-th requestto a stale page, 1 � j � s2. Let ~c(j) be the number of clean pages which are requested in thephase before the (s1+ j)-th request to a stale page. Furthermore, let ~s(j) be the number of stalepages which remain before that request. When MARKING(l) serves the (s1 + j)-th request to19



a stale page, exactly ~s(j)� ~c(j) of the ~s(j) stale pages are in fast memory (the ~s(j)� ~c(j) pagesin fast memory form a random subset of the ~s(j) stale pages). Thus, the expected cost of therequest equals ~s(j)� ~c(j)~s(j) � 0 + ~c(j)~s(j) � 1 = ~c(j)~s(j) :Note that ~c(j) � c and that ~s(j) = k � s1 � j + 1 for j = 1; 2; : : : ; s2. It follows that theexpected cost of the requests to stale pages is bounded byck � s1 + ck � s1 � 1 + ck � s1 � 2 + : : :+ ck � s1 � s2 + 1= ck � s1 + ck � s1 � 1 + ck � s1 � 2 + : : :+ ck � s+ 1 :The above sum consists of s2 � k� l� 1 terms and c1 is missing. Hence the sum is bounded byc(H(k � l)� 1), and we conclude that MARKING(l)'s cost during the phase is bounded fromabove by cH(k � l). This proves the theorem because OPT's amortized cost during the phaseis at least c=2. 2This following theorem implies that MARKING(l) is nearly optimal.Theorem 5 Let l � k � 2 and let A be a randomized on-line paging algorithm with stronglookahead l. If A is c-competitive, then c � H(k� l).Proof: The proof is similar to Raghavan's proof that no randomized on-line paging algorithm(without lookahead) can be better than H(k)-competitive [12]. Let S = fx1; x2; : : : ; xk+1g bea set of k + 1 pages and let SL = fx1; x2; : : : ; xlg. We assume without loss of generality thatinitially the pages x1; x2; : : : ; xk are in OPT's fast memory and in the fast memory of the on-linepaging algorithm A.The request sequence � which we will choose consists of a series of phases P (i). The �rstphase has the form P (1) = x1; x2; : : : ; xl; y1, where y1 = xk+1. Each of the following phasesP (i), i � 2, equals P (i) = x1; x2; : : : ; xl; yi, where yi is chosen uniformly at random fromS n fSL[ fyi�1gg.As in Raghavan's original proof, the request sequence � can be partitioned into a series ofrounds R(1); R(2);R(3); : : :, such that during each round, OPT incurs a cost of exactly 1. The�rst round R(1) consists of the �rst phase only, i.e., R(1) = P (1). The following rounds R(i),i � 2, contain requests to all k+1 pages in S. More speci�cally, each round R(i), i � 2, is �nishedwhen, for the �rst time, every page in S has been requested at least once. Again, for i = 1; 2; : : :,let tei denote the end of round R(i). Then round R(i) comprises �(tei�1+1); �(tei�1+2); : : : ; �(tei),where tei satis�estei = minfs > tei�1jcard(f�(tei�1+ 1); �(tei�1 + 2); : : : ; �(s)g) = k + 1g:Note that the end of each round coincides with the end of a phase.20



It is easy to see that OPT can serve the request sequence in such a way that its cost in eachround equals 1. On a fault, OPT simply evicts the page that will be requested last in the nextround.Now let DA be a deterministic on-line paging algorithm with strong lookahead l. We analyzeDA's expected cost on �. During the �rst round, DA incurs a cost of 1. We show that in eachof the remaining rounds, DA has an expected cost of at least H(k� l). Applying Yao's minimaxprinciple [16] we obtain the theorem. In every phase P (i), i � 2, DA has an expected cost ofat least 1k�l . Using a technique presented in Raghavan's original proof, we can easily show thatthe expected number of phases in each round R(i), i � 2, equals (k � l)H(k� l). Thus DA'sexpected cost in each round R(i), i � 2, is H(k� l). 2We conclude this section by presenting another randomized algorithm, called RANDOM(l)-blocked. As the name suggests this algorithm is a variant of the algorithm RANDOM due toRaghavan and Snir [13]. On a fault RANDOM chooses a page uniformly at random from amongthe pages in fast memory and evicts that page. In terms of competitiveness RANDOM(l)-blockedrepresents no improvement upon the previously presented algorithms with strong lookahead.However, RANDOM(l)-blocked, as the original algorithm RANDOM, is very simple and usesno information on previous requests.Algorithm RANDOM(l)-blocked: Serve the request sequence � in a series of blocks. Theseblocks have the same structure as those in the algorithm LRU(l)-blocked. At the beginning ofblock B(i) determine the set Si of pages in B(i) which are not in fast memory. Choose card(Si)pages uniformly at random from among the pages in fast memory which are not contained inB(i). Evict these pages and load the pages in Si. Then serve the requests in B(i).Theorem 6 Let l � k � 2. The algorithm RANDOM(l)-blocked with strong lookahead l is(k � l + 1)-competitive.Proof: The potential function we use to analyze the algorithm is�(t) = (k � l) � card(SR(t) n SOPT (t)):SR(t) denotes the set of pages contained in RANDOM(l)-blocked's fast memory after requestt and SOPT (t) denotes the set of pages contained in OPT's fast memory after request t. Weassume that RANDOM(l)-blocked and OPT start with the same initial fast memory.Suppose the request sequence � consists of b blocks B(1); B(2); : : : ; B(b). We assume withoutloss of generality that the last block B(b) contains l + 1 distinct requests. The values tbi andtei denote the beginning and the end of block B(i), respectively. De�ne te0 = 0. Let E[�(tei) ��(tei�1)] be the expected change in potential between tei�1 and tei . Furthermore, let CR(i) andCOPT (i) denote the cost incurred by RANDOM(l)-blocked and OPT during block B(i). Weshow that for all i = 1; 2; : : : ; b,CR(i) + E[�(tei)� �(tei�1)] � (k � l + 1)COPT (i):21



This inequality proves the theorem.If CR(i) = 0, then the inequality clearly holds. Each time OPT incurs a fault during blocki, it might evict a page which is in SR(tei�1) = SR(tei ). Hence each eviction can increase thepotential by (k � l).Now suppose CR(i) � 1 and let~C(i) = card(SR(tei�1) n fL(tbi) [ SOPT (tei�1)g):We analyze the e�ect of the moves by RANDOM(l)-blocked and OPT on the potential function�, and assume that our on-line algorithm serves the current block �rst and OPT serves second.RANDOM(l)-blocked evicts CR(i) pages at the beginning of block B(i). The pages to beevicted are chosen from among k � l � 1 + CR(i) pages in fast memory which are not in B(i).Among these k� l�1+CR(i) pages, exactly ~C(i) pages contribute to �(t). Thus RANDOM(l)-blocked's evictions cause an expected decrease in potential of(k � l)CR(i) ~C(i)k� l� 1 + CR(i) � (k � l) ~C(i) 1k� l = ~C(i):Note that a newly loaded page might not be in SOPT (tei�1), which can increase the potentialby (k � l) per page. Hence, RANDOM(l)-blocked's eviction rule cause an expected increase ofpotential of at most � ~C(i) + (k � l)CR(i):We consider OPT's cost. Each time OPT evicts a page, this can increase the potential by(k � l). Note that a page x which is requested in B(i) is not in SOPT (tei ) if and only if it wasevicted by OPT during B(i). HenceCR(i) + E[�(tei)� �(tei�1)] � CR(i)� ~C(i) + (k � l)COPT(i):Since CR(i) � COPT (i) + ~C(i), we obtainCR(i) + E[�(tei)� �(tei�1)] � (k � l + 1)COPT (i):24 Open problemsIn this paper we have introduced a new model of lookahead, called strong lookahead, and haveanalyzed several on-line paging algorithms using this model. One open problem is to determinethe exact competitiveness of the algorithm LRU(l)-blocked. Is the algorithm (k� l)-competitiveor can a lower of (k � l + 1) on the competitive factor be shown? Another open problem is toextend other k-competitive on-line paging algorithms, such as the algorithm FIFO, to our modelof strong lookahead. Intuitively, FIFO(l), where l � k � 2, would work as follows: On a fault it22



evicts the page that has been in fast memory longest among pages in fast memory that are notcontained in the present lookahead. It is worth noting that the techniques which we have usedin proving that LRU(l) is (k� l)-competitive can not be applied directly to show that FIFO(l) is(k� l)-competitive. Finally, an interesting problem is to present other models of lookahead thatare of theoretical and practical interest and improve the competitive factors of on-line pagingalgorithms.AcknowledgmentThe author thanks Kurt Mehlhorn for helpful discussions. She also thanks Volker Priebe andRonald Rasch for careful reading of the manuscript.References[1] A. Agarwal, R.L. Sites and M. Horowitz. ATUM: A new technique for capturing addresstraces using microcode. In Proc. 13th Annual Symposium on Computer Architecture, pages119{127, 1986.[2] L.A. Belady. A study of replacement algorithms for virtual storage computers. IBM SystemsJournal, 5:78{101, 1966.[3] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power ofrandomization in on-line algorithms. Algorithmica, 11(1):2{14, 1994.[4] F.K. Chung, R. Graham and M.E. Saks. A dynamic location problem for graphs. Combi-natorica, 9(2):111{131, 1989.[5] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator and N.E. Young. Competitivepaging algorithms. Journal of Algorithms, 12:685{699, 1991.[6] S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms. Algo-rithmica, 11(1):73{91, 1994.[7] M.M. Halld�orsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proc. 3rdAnnual ACM-SIAM Symposium on Discrete Algorithms, pages 211{216, 1992.[8] S. Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53{62, 1994.[9] M.-Y. Kao and S.R. Tate. Online matching with blocked input. Information ProcessingLetters, 38:113{116, 1991.[10] A.R. Karlin, M.S. Manasse, L. Rudolph and D.D. Sleator. Competitive snoopy caching.Algorithmica, 3(1):79{119, 1988.[11] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging algorithm.Algorithmica, 6:816{825, 1991.[12] P. Raghavan. Lecture notes on randomized algorithms. IBM Research Report No. RC 15340(# 68237), Yorktown Heights, 1989. 23



[13] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. In Proc. 16thInternational Colloquium on Automata, Languages and Programming, Springer LectureNotes in Computer Science, Vol. 372, pages 687{703, 1989.[14] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Com-munication of the ACM, 28:202{208, 1985.[15] J.R. Spirn. Program Behavior: Models and Measurements. Elsevier, New York, 1977.[16] A.C.-C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. In Proc.17th Annual IEEE Symposium on Foundations of Computer Science, pages 222{227, 1977.[17] N. Young. Competitive Paging and Dual-Guided On-Line Weighted Caching and Match-ing Algorithms. Ph.D. thesis, Princeton University, 1991. Available as Computer ScienceDepartment Technical Report CS-TR-348-91.

24


