Splay Trees

Disadvantage of balanced search trees:

- − worst case; no advantage for easy inputs
- − additional memory required
- − complicated implementation

Splay Trees:

- $+$ after access, an element is moved to the root; splay (x) repeated accesses are faster
- − only amortized guarantee
- − read-operations change the tree

Splay Trees

insert*(x)*

- **▶** search for x ; \bar{x} is last visited element during search (successer or predecessor of *x*)
- \blacktriangleright splay (\bar{x}) moves \bar{x} to the root
- *▶* insert *x* as new root

Splay Trees

$find(x)$

- *▶* search for *x* according to a search tree
- **▶** let \bar{x} be last element on search-path
- \blacktriangleright splay (\bar{x})

7.3 Splay Trees 15. Nov. 2024

Splay Trees

delete*(x)*

- *▶* search for *x*; splay(*x*); remove *x*
- \blacktriangleright search largest element \bar{x} in \bar{A}
- \blacktriangleright splay(\bar{x}) (on subtree A)
- \triangleright connect root of *B* as right child of \bar{x}

Move to Root

How to bring element to root?

- *▶* one (bad) option: moveToRoot(*x*)
- *▶* iteratively do rotation around parent of *x* until *x* is root
- *▶* if *x* is left child do right rotation otw. left rotation

better option splay (x) :

- *▶* zigzag case: if *x* is right child and parent of *x* is left child (or x left child parent of x right child)
- *▶* do double right rotation around grand-parent (resp. double left rotation)

Note that moveToRoot(*x*) does the same.

 $\begin{array}{c} \begin{array}{c} \text{||} \text{||} \text{||} \text{||} \text{|} \text{|} \text{|} \text{|} \text{|} \text{Räckel} \end{array} \end{array}$ 41/59

7.3 Splay Trees 15. Nov. 2024

Splay: Zig Case

▶ do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

Static Optimality

Suppose we have a sequence of *m* find-operations. find*(x)* appears h_x times in this sequence.

The cost of a static search tree *T* is:

$$
cost(T) = m + \sum_{x} h_x \operatorname{depth}_T(x)
$$

The total cost for processing the sequence on a splay-tree is $\mathcal{O}(\text{cost}(T_{\text{min}}))$, where T_{min} is an optimal static search tree.

Lemma 1

Splay Trees have an amortized running time of O*(*log *n) for all operations.*

Dynamic Optimality

Let *S* be a sequence with *m* find-operations.

Let *A* be a data-structure based on a search tree:

- \blacktriangleright the cost for accessing element *x* is $1 + \text{depth}(x)$;
- *▶* after accessing *x* the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from *S* has cost $\mathcal{O}(\text{cost}(A, S))$, for processing *S*.

 $\boxed{\text{min}}$ Harald Räcke $\boxed{\text{max}}$ and $\$

7.3 Splay Trees 15. Nov. 2024

Amortized Analysis

Definition 2

A data structure with operations ${\rm op}_1(),\ldots,{\rm op}_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most *n* elements, and let k_i denote the number of occurences of $\operatorname{op}_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n).$

7.3 Splay Trees 15. Nov. 2024

Potential Method

Introduce a potential for the data structure.

- $\blacktriangleright \Phi(D_i)$ is the potential after the *i*-th operation.
- *▶* Amortized cost of the *i*-th operation is

$$
\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) .
$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$
\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i
$$

This means the amortized costs can be used to derive a bound on the total cost.

Example: Stack

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

▶ S. push*()*: cost

$$
\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2.
$$

Note that the analysis becomes wrong if pop*()* or multipop*()* are called on an empty stack.

- *▶ S.* pop*()*: cost
	- $\hat{C}_{\text{non}} = C_{\text{non}} + \Delta \Phi = 1 1 \leq 0$.
- *▶ S.* multipop*(k)*: cost

$$
\hat{C}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0.
$$

Harald Räcke 52/59

7.3 Splay Trees 15. Nov. 2024

Example: Stack

Stack

- *▶ S.* push*()*
- *▶ S.* pop*()*
- *▶ S.* multipop*(k)*: removes *k* items from the stack. If the stack currently contains less than *k* items it empties the stack.
- *▶* The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- *▶ S.* push*()*: cost 1.
- *▶ S.* pop*()*: cost 1.
- \triangleright *S*. multipop(*k*): cost min{size, k } = *k*.

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an *n*-bit binary counter may require to examine *n*-bits, and maybe change them.

Actual cost:

- *▶* Changing bit from 0 to 1: cost 1.
- *▶* Changing bit from 1 to 0: cost 1.
- *▶* Increment: cost is *k* + 1, where *k* is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has $k = 1$).

Example: Binary Counter

Choose potential function $\Phi(x) = k$, where *k* denotes the number of ones in the binary representation of *x*.

Amortized cost:

▶ Changing bit from 0 to 1:

$$
\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2.
$$

▶ Changing bit from 1 to 0:

$$
\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0.
$$

▶ Increment: Let *k* denotes the number of consecutive ones in the least significant bit-positions. An increment involves *k* $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

```
Hence, the amortized cost is k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \le 2.
```


Splay Trees

potential function for splay trees:

- \blacktriangleright size $s(x) = |T_x|$
- \blacktriangleright rank $r(x) = \log_2(s(x))$
- \blacktriangleright $\Phi(T) = \sum_{v \in T} r(v)$

amortized $cost = real cost + potential change$

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

Amortized cost of the whole splay operation: ≤ 1 + 1 + \sum 3($r_t(x) - r_{t-1}(x)$) steps *t* $= 2 + 3(r (root) - r_0(x))$ ≤ O*(*log *n)* $\frac{1}{2}$ The first one is added due to the fact that so far for each step of a splay-operation we have only counted the number of rotations, but the cost is 1+#rotations. The second one comes from the zig-operation. Note that we have at most one zig-operation during a splay. **7.3 Splay Trees 15. Nov. 2024** $\boxed{\sqrt{\left[\left[\begin{matrix}1\end{matrix}\right]\right]}}$ Harald Räcke 59/59

Bibliography ??????????????????????????????????????

