7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- *▶* time for search Θ*(n)*
- \blacktriangleright time for insert $\Theta(n)$ (dominated by searching the item)
- *▶* time for delete Θ*(*1*)* if we are given a handle to the object, otw. Θ*(n)*

```
\rightarrow 10 \rightarrow 12 \rightarrow 14 \rightarrow 18 \rightarrow 23 \rightarrow 26
```


7.5 Skip Lists

Add more express lanes. Lane *^Lⁱ* contains roughly every *^Li*−¹ *Li* -th item from list *Li*−1.

Search(x) $(k + 1$ lists L_0, \ldots, L_k

- \blacktriangleright Find the largest item in list L_k that is smaller than *x*. At most $|L_k|$ + 2 steps.
- *▶* Find the largest item in list *Lk*−¹ that is smaller than *x*. At $\textsf{most} \, \lceil \frac{|L_{k-1}|}{|L_{k}|+1} \rceil + 2 \, \textsf{steps}.$
- *▶* Find the largest item in list *Lk*−² that is smaller than *x*. At $\textsf{most} \, \lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \rceil + 2 \, \textsf{steps}.$
- *▶* . . .

$$
\blacktriangleright \text{ At most } |L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1) \text{ steps.}
$$

$$
\text{min}_{\text{Harald Räc}}
$$

7.5 Skip Lists 2. Dec. 2024 Harald Räcke 198/210

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L₁| denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1|+\frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.5 Skip Lists

<code>Choose</code> ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$
r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}
$$

$$
= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}
$$

$$
= (k+1)n^{\frac{1}{k+1}}.
$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.

7.5 Skip Lists

How to do insert and delete?

 \blacktriangleright If we want that in L_i we always skip over roughly the same number of elements in *Li*−¹ an insert or delete may require a lot of re-organisation.

Use randomization instead!

7.5 Skip Lists

Insert (35):

7.5 Skip Lists

Insert:

- *▶* A search operation gives you the insert position for element *x* in every list.
- *▶* Flip a coin until it shows head, and record the number $t \in \{1, 2, \dots\}$ of trials needed.
- *▶* Insert *x* into lists L_0 , . . . , L_{t-1} .

Delete:

- *▶* You get all predecessors via backward pointers.
- *▶* Delete *x* in all lists it actually appears in.

The time for both operations is dominated by the search time.

High Probability

Definition 18 (High Probability)

We say a **randomized** algorithm has running time $O(\log n)$ with high probability if for any constant *α* the running time is at most $\mathcal{O}(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Here the O-notation hides a constant that may depend on *α*.

High Probability

Suppose there are polynomially many events $E_1, E_2, \ldots, E_\ell, \, \ell = n^c$ each holding with high probability (e.g. *Eⁱ* may be the event that the *i*-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all *Eⁱ* hold is at least

 $\Pr[E_1 \wedge \cdots \wedge E_\ell] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_\ell]$ $\geq 1 - n^c \cdot n^{-\alpha}$ $= 1 - n^{c - \alpha}$.

This means $E_1 \wedge \cdots \wedge E_\ell$ holds with high probability.

7.5 Skip Lists

Lemma 19

A search (and, hence, also insert and delete) in a skip list with n elements takes time O*(logn) with high probability (w. h. p.).*

From this it follows that w.h.p. there are no long paths.

Harald Räcke 206/210

7.5 Skip Lists

Estimation for Binomial Coefficients

$$
\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k
$$

$$
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k
$$

$$
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n - k + 1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}
$$

$$
= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!} \le \left(\frac{n}{k}\right)^k \cdot \sum_{i \ge 0} \frac{k^i}{i!} = \left(\frac{en}{k}\right)^k
$$

7.5 Skip Lists

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above *Lk*.

In particular, this means that during the construction in the backward analysis we see at most *k* heads (i.e., coin flips that tell you to go up) in *z* trials.

7.5 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}$.

For the search to take at least *z* = 7*αγ* log *n* steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

> $Pr[$ search requires z steps $] \le Pr[E_{z,k}] + Pr[A_{k+1}]$ $\leq n^{-\alpha} + n^{-(\gamma-1)}$

This means, the search requires at most *z* steps, w. h. p.

7.5 Skip Lists

 $Pr[E_{z,k}] \leq Pr[$ at most *k* heads in *z* trials]

$$
\leq \binom{z}{k}2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}
$$

choosing $k = y \log n$ with $y \ge 1$ and $z = (\beta + \alpha) y \log n$

$$
\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma\alpha} \leq \left(\frac{2ez}{2^{\beta k}}\right)^k \cdot n^{-\alpha}
$$

$$
\leq \left(\frac{2e(\beta+\alpha)}{2^{\beta}}\right)^k n^{-\alpha}
$$

now choosing $\beta = 6\alpha$ gives

$$
\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

for $\alpha > 1$.

2. Dec. 2024

