
7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

▶ time for search Θ(n)
▶ time for insert Θ(n) (dominated by searching the item)

▶ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(n)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

2. Dec. 2024

Harald Räcke 196/210

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| =
√
n. Then search time Θ(

√
n).

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)

▶ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

▶ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉
+ 2 steps.

▶ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉
+ 2 steps.

▶ . . .

▶ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 198/210

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr).
Choose r = n

1
k+1 . Then

r−kn+ kr =
(
n

1
k+1

)−k
n+ kn

1
k+1

= n1− k
k+1 + kn

1
k+1

= (k+ 1)n
1
k+1 .

Choosing k = Θ(logn) gives a logarithmic running time.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 199/210

7.5 Skip Lists

How to do insert and delete?

▶ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 200/210

7.5 Skip Lists

Insert:

▶ A search operation gives you the insert position for element

x in every list.

▶ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

▶ Insert x into lists L0, . . . , Lt−1.

Delete:

▶ You get all predecessors via backward pointers.

▶ Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 201/210

7.5 Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 202/210

High Probability

Definition 18 (High Probability)

We say a randomized algorithm has running time O(logn) with

high probability if for any constant α the running time is at most

O(logn) with probability at least 1− 1
nα .

Here the O-notation hides a constant that may depend on α.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 203/210

High Probability

Suppose there are polynomially many events E1, E2, . . . , Eℓ, ℓ = nc
each holding with high probability (e.g. Ei may be the event that

the i-th search in a skip list takes time at most O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · · ∧ Eℓ] = 1− Pr[Ē1 ∨ · · · ∨ Ēℓ]
≥ 1−nc ·n−α

= 1−nc−α .

This means E1 ∧ · · · ∧ Eℓ holds with high probability.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 204/210

7.5 Skip Lists

Lemma 19

A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 205/210

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

▶ A “long” search path must also go very high.

▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 206/210

7.5 Skip Lists

Estimation for Binomial Coefficients

(
n
k

)k
≤
(
n
k

)
≤
(
en
k

)k

(
n
k

)
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
(
n
k

)k

(
n
k

)
= n · . . . · (n− k+ 1)

k!
≤ nk

k!
= nk · kk
kk · k!

=
(
n
k

)k
· k

k

k!
≤
(
n
k

)k
·
∑
i≥0

ki

i!
=
(
en
k

)k

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 208/210

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
2−βk ·n−γα ≤

(
2ez
2βk

)k
·n−α

≤
(

2e(β+α)
2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 209/210

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

Skip Lists

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].

7.5 Skip Lists 2. Dec. 2024

Harald Räcke 211/210

	Skip Lists

