6.2 Master Theorem

Note that the cases do not cover all possibilities.

Lemma 5

Let $a \ge 1, b > 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \; .$$

Case 1. If $f(n) = O(n^{\log_b(a)-\epsilon})$ then $T(n) = O(n^{\log_b a})$.

Case 2. If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3. If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

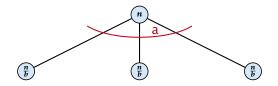
We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

The running time of a recursive algorithm can be visualized by a recursion tree:

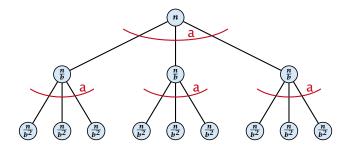
The running time of a recursive algorithm can be visualized by a recursion tree:

n

The running time of a recursive algorithm can be visualized by a recursion tree:

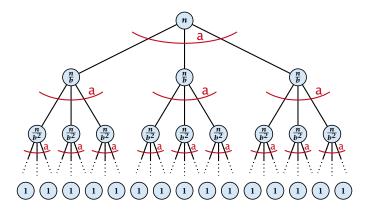


The running time of a recursive algorithm can be visualized by a recursion tree:



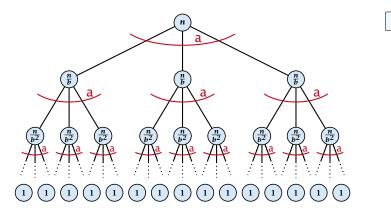
6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

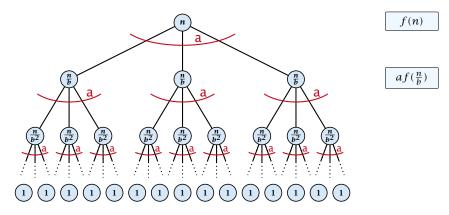
The running time of a recursive algorithm can be visualized by a recursion tree:



f(n)

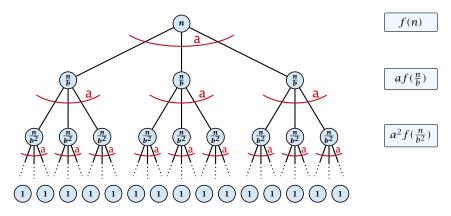
6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:



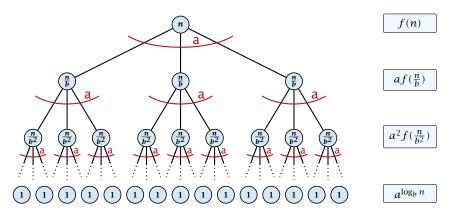
6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:



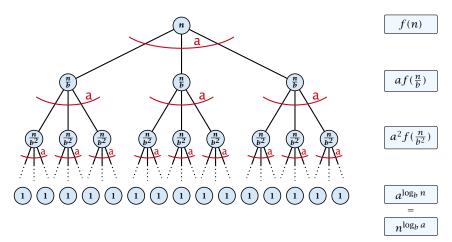
6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \ .$$

 $T(n) - n^{\log_b a}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$

 $b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\underbrace{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}_{b=0} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\boxed{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\boxed{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}$$

q-1

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k c n^{\log_b a-\epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} a^{-i}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^k a^{-\epsilon}} = c n^{\log_b a-\epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$
$$= c n^{\log_b a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

6.2 Master Theorem

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a-\epsilon}$$
$$\frac{b^{-i(\log_b a-\epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon}} = c n^{\log_b a-\epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$
$$\frac{\sum_{i=0}^{k} q^i = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^{k-1} c n^{\log_b a-\epsilon} (b^{\epsilon}\log_b n-1)/(b^{\epsilon}-1)}$$
$$= c n^{\log_b a-\epsilon} (n^{\epsilon}-1)/(b^{\epsilon}-1)$$
$$= \frac{c}{b^{\epsilon}-1} n^{\log_b a} (n^{\epsilon}-1)/(n^{\epsilon})$$

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a-\epsilon}$$

$$\frac{b^{-i(\log_{b} a-\epsilon)} = b^{\epsilon i}(b^{\log_{b} a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k-1} e^{i} c n^{\log_{b} a-\epsilon}} \sum_{i=0}^{\log_{b} n-1} (b^{\epsilon})^{i}$$

$$\frac{\sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1}}{e^{-1}} = c n^{\log_{b} a-\epsilon} (b^{\epsilon \log_{b} n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_{b} a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_{b} a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log_b(a)}$$

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a-\epsilon}$$

$$\frac{b^{-i(\log_{b} a-\epsilon)} = b^{\epsilon i} (b^{\log_{b} a})^{-i} = b^{\epsilon i} a^{-i}}{\sum_{i=0}^{k-1}} = c n^{\log_{b} a-\epsilon} \sum_{i=0}^{\log_{b} n-1} (b^{\epsilon})^{i}$$

$$\frac{\sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1}}{\sum_{i=0}^{k} a^{-\epsilon}} = c n^{\log_{b} a-\epsilon} (b^{\epsilon} \log_{b} n - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_{b} a-\epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_{b} a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

Hence,

$$T(n) \leq \left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log_b(a)} \qquad \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$

 $T(n) - n^{\log_b a}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

 $T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

 $T(n) = \mathcal{O}(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$

 $T(n) - n^{\log_b a}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

 $T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$
$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$
$$= c n^{\log_b a} \log_b n$$

Hence,

 $T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$

$$\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$$

 $T(n) - n^{\log_b a}$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n=b^\ell \Rightarrow \ell = \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$
$$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$
$$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$
$$= c n^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k$$

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k} \approx \frac{1}{k} \ell^{k+1}$$

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$\approx \frac{c}{k} n^{\log_{b} a} \ell^{k+1}$$

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq c \sum_{i=0}^{\log_{b} n-1} a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} \cdot \left(\log_{b} \left(\frac{n}{b^{i}}\right)\right)^{k}$$

$$\overline{n = b^{\ell} \Rightarrow \ell = \log_{b} n} = c n^{\log_{b} a} \sum_{i=0}^{\ell-1} \left(\log_{b} \left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=0}^{\ell-1} (\ell - i)^{k}$$

$$= c n^{\log_{b} a} \sum_{i=1}^{\ell} i^{k}$$

$$\approx \frac{c}{k} n^{\log_{b} a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_{b} a} \log^{k+1} n)$$

Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$?

6.2 Master Theorem

25. Oct. 2024 62/69

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$
$$\leq \sum_{i=0}^{\log_b n-1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$q < 1: \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$q < 1: \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \qquad \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

Hence,

 $T(n) \leq \mathcal{O}(f(n))$

Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$?

25. Oct. 2024 62/69

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$
$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$
$$\leq 1 : \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$

Hence,

q <

$$T(n) \leq \mathcal{O}(f(n))$$

$$\Rightarrow T(n) = \Theta(f(n)).$$

Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$?

25. Oct. 2024 62/69

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

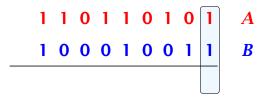
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

1 1 0 1 0 1 0 1 A 1 0 0 0 1 0 0 1 1 B

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

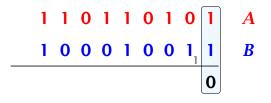
For this we first need to be able to add two integers **A** and **B**:



6.2 Master Theorem

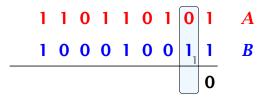
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

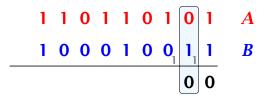


6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

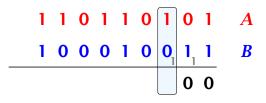


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

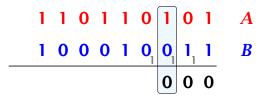
For this we first need to be able to add two integers **A** and **B**:



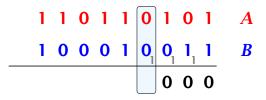
6.2 Master Theorem

25. Oct. 2024 63/69

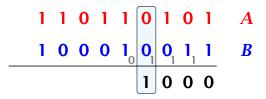
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

_

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

-

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

_

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

-

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

25. Oct. 2024 63/69

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

6.2 Master Theorem

25. Oct. 2024 63/69

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers **A** and **B**:

This gives that two *n*-bit integers can be added in time O(n).

Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

This is also nown as the "school method" for multiplying integers.
Note that the intermediate numbers that are generated can have at most m + n ≤ 2n bits.

Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

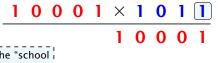
$1 \ 0 \ 0 \ 0 \ 1 \times 1 \ 0 \ 1 \ 1$

This is also nown as the "school method" for multiplying integers.
Note that the intermediate numbers that are generated can have at most m + n ≤ 2n bits.

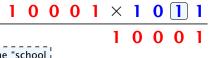
Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

 $1 \ 0 \ 0 \ 0 \ 1 \times 1 \ 0 \ 1 \ \mathbf{1}$

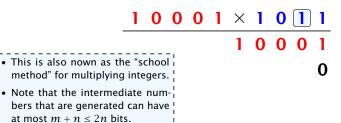
This is also nown as the "school method" for multiplying integers.
Note that the intermediate numbers that are generated can have at most m + n ≤ 2n bits.

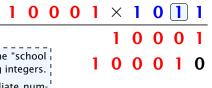


- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate numbers that are generated can have
- at most $m + n \leq 2n$ bits.

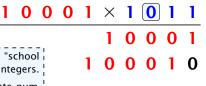


- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate numbers that are generated can have
- at most $m + n \leq 2n$ bits.

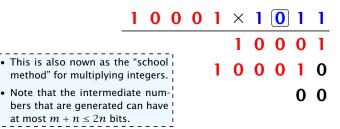




- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate numbers that are generated can have
- at most $m + n \le 2n$ bits.



- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate numbers that are generated can have
 the section of the secti
- at most $m + n \le 2n$ bits.



	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
This is also nown as th method" for multiplying					1	0	0	0	1	0
Note that the intermed bers that are generated at most $m + n \le 2n$ bits	can			0	0	0	0	0	0	0

	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
• This is also nown as the method" for multiplying					1	0	0	0	1	0
 Note that the intermediate bers that are generated at most <i>m</i> + <i>n</i> ≤ 2<i>n</i> bits 	can			0	0	0	0	0	0	0

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
 This is also nown as th method" for multiplying 					1	0	0	0	1	0
• Note that the intermed bers that are generated				0	0	0	0	0	0	0
at most $m + n \le 2n$ bit								0	0	0

ı,

	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
• This is also nown as th method" for multiplying					1	0	0	0	1	0
• Note that the intermed bers that are generated				0	0	0	0	0	0	0
at most $m + n \le 2n$ bits	5. 		1	0	0	0	1	0	0	0

	1	0	0	0	1	X	1	0	1	1
			_			1	0	0	0	1
• This is also nown as th method" for multiplying					1	0	0	0	1	0
• Note that the intermed bers that are generated				0	0	0	0	0	0	0
at most $m + n \le 2n$ bit			1	0	0	0	1	0	0	0

	1	0	0	0	1	×	1	0	1	1
						1	0	0	0	1
 This is also nown as the method" for multiplying 					1	0	0	0	1	0
Note that the intermedi bers that are generated	ate	num	- [0	0	0	0	0	0	0
at most $m + n \le 2n$ bits			1	0	0	0	1	0	0	0
-			1	0	1	1	1	0	1	1

Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
 This is also nown as the method" for multiplying 					1	0	0	0	1	0
• Note that the intermedi bers that are generated				0	0	0	0	0	0	0
at most $m + n \le 2n$ bits			1	0	0	0	1	0	0	0
-			1	0	1	1	1	0	1	1

Time requirement:

Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
 This is also nown as the method" for multiplying 					1	0	0	0	1	0
Note that the intermedi bers that are generated	ate	num	- ¦	0	0	0	0	0	0	0
at most $m + n \le 2n$ bits			1	0	0	0	1	0	0	0
-			1	0	1	1	1	0	1	1

Time requirement:

• Computing intermediate results: O(nm).

Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

	1	0	0	0	1	\times	1	0	1	1
						1	0	0	0	1
 This is also nown as the method" for multiplying 					1	0	0	0	1	0
Note that the intermediate bers that are generated				0	0	0	0	0	0	0
at most $m + n \le 2n$ bits			1	0	0	0	1	0	0	0
_			1	0	1	1	1	0	1	1

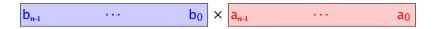
Time requirement:

- Computing intermediate results: O(nm).
- Adding *m* numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

A recursive approach:

A recursive approach:

A recursive approach:



A recursive approach:

A recursive approach:

$$\begin{array}{|c|c|c|c|c|c|} \hline B_1 & B_0 & \times & A_1 & A_0 \\ \hline \end{array}$$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

$$\begin{array}{|c|c|c|c|c|c|} B_1 & B_0 & \times & A_1 & A_0 \\ \hline \end{array}$$

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 B_0$$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 Algorithm 3 mult(A, B)

 1: if |A| = |B| = 1 then

 2: return $a_0 \cdot b_0$

 3: split A into A_0 and A_1

 4: split B into B_0 and B_1

 5: $Z_2 \leftarrow mult(A_1, B_1)$

 6: $Z_1 \leftarrow mult(A_1, B_0) + mult(A_0, B_1)$

 7: $Z_0 \leftarrow mult(A_0, B_0)$

 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Algorithm 3 mult(A, B)		
1: if $ A = B = 1$ then	$\mathcal{O}(1)$	
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$	
3: split A into A_0 and A_1	$\mathcal{O}(n)$	
4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$	
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$	
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$		
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$		
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$		

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + O(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	_
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

Algorithm 3 mult(A, B)	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

• Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
 $T(n) = O(n^{\log_b a})$

• Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

 \Rightarrow Not better then the "school method".

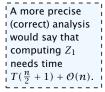
We can use the following identity to compute Z_1 :

```
A more precise
(correct) analysis
would say that
computing Z_1
needs time
T(\frac{n}{2}+1) + O(n).
```


6.2 Master Theorem

We can use the following identity to compute Z_1 :

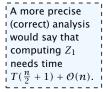
 $Z_1 = A_1 B_0 + A_0 B_1$



6.2 Master Theorem

We can use the following identity to compute Z_1 :

 $Z_1 = A_1 B_0 + A_0 B_1$ = (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0



6.2 Master Theorem

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

A more precise (correct) analysis would say that computing Z_1 needs time $T(\frac{n}{2} + 1) + O(n)$.

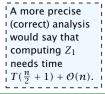
6.2 Master Theorem

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,



6.2 Master Theorem

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,	
Hence,	Algorithm 4 mult(A,B)
	1: if $ A = B = 1$ then
	2: return $a_0 \cdot b_0$
	3: split A into A_0 and A_1
	4: split B into B_0 and B_1
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
needs time $T(n + 1) + O(n)$	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$
$T(\frac{n}{2}+1)+\mathcal{O}(n).$	

Harald Räcke

6.2 Master Theorem

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	
	3: split A into A_0 and A_1	
	4: split <i>B</i> into B_0 and B_1	
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
(correct) analysis would say that	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
needs time	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	
$T(\frac{n}{2}+1) + \mathcal{O}(n).$		

Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	
	4: split <i>B</i> into B_0 and B_1	
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
needs time	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	
$T(\frac{n}{2}+1) + \mathcal{O}(n).$		1

Harald Räcke

Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
needs time $T(n + 1) + O(n)$	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	
$T(\frac{n}{2}+1) + \mathcal{O}(n).$		

6.2 Master Theorem

Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	
(correct) analysis would say that	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
needs time $T(n + 1) + O(n)$	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	
$T(\frac{n}{2}+1) + \mathcal{O}(n).$,

Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	
would say that computing Z_1 needs time $T(\frac{n}{2}+1) + O(n)$.	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	

Harald Räcke

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
(correct) analysis would say that computing Z_1 needs time	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	
	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	
$T(\frac{n}{2}+1)+\mathcal{O}(n).$		

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
ficilitie,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split B into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$T(\frac{n}{2}) + \mathcal{O}(n)$
needs time	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	
$T(\frac{n}{2}+1)+\mathcal{O}(n).$		

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= (A_0 + A_1) \cdots (B_0 + B_1) - A_1 B_1 - A_0 B_0

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split B into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$T(\frac{n}{2}) + \mathcal{O}(n)$
needs time	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$
$T(\frac{n}{2}+1)+\mathcal{O}(n).$		1

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$
.

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

