
8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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8.3 Fibonacci Heaps

Additional implementation details:

▶ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

▶ Every node stores a boolean value x.marked that specifies

whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:

▶ t(S) denotes the number of trees in the heap.

▶ m(S) denotes the number of marked nodes.

▶ We use the potential function Φ(S) = t(S)+ 2m(S).
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The potential is Φ(S) = 5+ 2 · 3 = 11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S.minimum()
▶ Access through the min-pointer.

▶ Actual cost O(1).
▶ No change in potential.

▶ Amortized cost O(1).
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8.3 Fibonacci Heaps

S.merge(S′)
▶ Merge the root lists.

▶ Adjust the min-pointer
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Running time:

▶ Actual cost O(1).
▶ No change in potential.

▶ Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S. insert(x)
▶ Create a new tree containing x.

▶ Insert x into the root-list.

▶ Update min-pointer, if necessary.
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x

Running time:

▶ Actual cost O(1).
▶ Change in potential is +1.

▶ Amortized cost is c +O(1) = O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

▶ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
▶ Update min-pointer; time: (t +D(min)) · O(1).
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▶ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Actual cost for delete-min()
▶ At most Dn + t elements in root-list before consolidate.

▶ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()

▶ t′ ≤ Dn + 1 as degrees are different after consolidating.

▶ Therefore ∆Φ ≤ Dn + 1− t;
▶ We can pay c · (t −Dn − 1) from the potential decrease.

▶ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)

for c ≥ c1 .
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8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 117/127



8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will be

a set of distinct binomial trees, and, hence, the Fibonacci heap

will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.
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Fibonacci Heaps: decrease-key(handle h, v)
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Case 1: decrease-key does not violate heap-property

▶ Just decrease the key-value of element referenced by h.

Nothing else to do.
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Case 2: heap-property is violated, but parent is not marked

▶ Decrease key-value of element x reference by h.

▶ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Mark the (previous) parent of x (unless it’s a root).
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Case 3: heap-property is violated, and parent is marked

▶ Decrease key-value of element x reference by h.

▶ Cut the parent edge of x, and make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Continue cutting the parent until you arrive at an unmarked

node.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

▶ Decrease key-value of element x reference by h.

▶ Cut the parent edge of x, and make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,

if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,

if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,

if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,

if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ

▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ)

≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2

= O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Fibonacci Heaps: decrease-key(handle h, v)
Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 121/127



Delete node

H. delete(x):
▶ decrease value of x to −∞.

▶ delete-min.

Amortized cost: O(Dn)
▶ O(1) for decrease-key.

▶ O(Dn) for delete-min.

8.3 Fibonacci Heaps 15. Nov. 2024

Harald Räcke 122/127



8.3 Fibonacci Heaps

Lemma 1

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
{

0 if i = 1

i− 2 if i > 1
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8.3 Fibonacci Heaps

Proof

▶ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

▶ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

▶ Since, then yi has lost at most one child.

▶ Therefore, degree(yi) ≥ i− 2.
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8.3 Fibonacci Heaps
▶ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

▶ sk monotonically increases with k
▶ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑
i=2

size(yi)

≥ 2+
k∑
i=2

si−2

= 2+
k−2∑
i=0

si
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8.3 Fibonacci Heaps

Definition 2

Consider the following non-standard Fibonacci type sequence:

Fk =


1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

φ = 1
2 (1 +

√
5) denotes the golden ratio.

Note that φ2 = 1+φ.

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+

∑k−2
i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.
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k=0: 1 = F0 ≥ Φ0 = 1

k=1: 2 = F1 ≥ Φ1 ≈ 1.61

k-2,k-1→ k: Fk = Fk−1 + Fk−2 ≥ Φk−1 + Φk−2 = Φk−2(Φ+1) = Φk
Φ2︷ ︸︸ ︷

k=2: 3 = F2 = 2+ 1 = 2+ F0

k-1→ k: Fk = Fk−1 + Fk−2 = 2+
∑k−3
i=0 Fi + Fk−2 = 2+

∑k−2
i=0 Fi
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