Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

$7 \leftarrow 3 \leftarrow 23 \leftarrow 24$ 26) (46 35 (23) (24) (17) 30 3 41) (52 44 18 39 min

8.3 Fibonacci Heaps

The potential function:

- *▶ t(S)* denotes the number of trees in the heap.
- *▶ m(S)* denotes the number of marked nodes.
- *▶* We use the potential function $\Phi(S) = t(S) + 2m(S)$.

The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

Harald Räcke 110/127

8.3 Fibonacci Heaps

Additional implementation details:

- *▶* Every node *x* stores its degree in a field *x.* degree. Note that this can be updated in constant time when adding a child to *x*.
- *▶* Every node stores a boolean value *x.* marked that specifies whether *x* is marked or not.

 $\overline{0}$ Harald Räcke 109/127 and Räcke 1

8.3 Fibonacci Heaps 15. Nov. 2024

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use *c* to denote the amount of work that a unit of potential can pay for.

S. minimum*()*

- *▶* Access through the min-pointer.
- \blacktriangleright Actual cost $\theta(1)$.
- *▶* No change in potential.
- \blacktriangleright Amortized cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

 $\frac{1}{x}$ is inserted next to the min-pointer as this is our entry point into the root-list.

S. insert (x)

- *▶* Create a new tree containing *x*.
- *▶* Insert *x* into the root-list.
- *▶* Update min-pointer, if necessary.

Running time:

- \blacktriangleright Actual cost $\mathcal{O}(1)$.
- *▶* Change in potential is +1.
- \triangleright Amortized cost is $c + \mathcal{O}(1) = \mathcal{O}(1)$.

8.3 Fibonacci Heaps 15. Nov. 2024 \Box Harald Räcke 114/127

8.3 Fibonacci Heaps

- *S.* merge*(S*′*)*
	- *▶* Merge the root lists.
	- *▶* Adjust the min-pointer

▶ Hence, amortized cost is O*(*1*)*.

8.3 Fibonacci Heaps Department of the number of the node that

children of the node that stores the minimum.

S. delete-min*(x)*

- *▶* Delete minimum; add child-trees to heap; time: $D(\text{min}) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\text{min})) \cdot \mathcal{O}(1)$.

8.3 Fibonacci Heaps $\begin{array}{c} \downarrow D(\text{min}) \text{ is the number of} \\ \downarrow \text{children of the node that} \end{array}$

children of the node that stores the minimum.

S. delete-min*(x)*

- *▶* Delete minimum; add child-trees to heap; time: $D(\text{min}) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\text{min})) \cdot \mathcal{O}(1)$.

▶ Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps Consolidate: min \rightarrow (7) 24 26) (46 35 (23) \longleftrightarrow (24) \longleftrightarrow (17) 30 $18 \leftrightarrow 52$ 41) (39 44 $0 1 2 3$ $7 \times 18 \times 52$ current 8.3 Fibonacci Heaps 15. Nov. 2024 Harald Räcke 116/127

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

8.3 Fibonacci Heaps

8.3 Fibonacci Heaps

 $'t$ and t' denote the number of trees before and after the delete-min*()* operation, respectively. ΔD_n is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min*()*

- **▶** At most $D_n + t$ elements in root-list before consolidate.
- **▶** Actual cost for a delete-min is at most $O(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min*()*

- ▶ t' ≤ D_n + 1 as degrees are different after consolidating.
- *►* Therefore $\Delta \Phi \le D_n + 1 t$;
- *►* We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- *▶* The amortized cost is

```
c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)
```

```
\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq O(D_n)
```

```
for c \geq c_1.
```
8.3 Fibonacci Heaps 15. Nov. 2024 $\textcolor{red}{\bigcup}\textcolor{red}{\bigcup}\textcolor{red}{\bigcup}$ Harald Räcke 117/127

8.3 Fibonacci Heaps

Consolidate: 7 52 23 18 (39 (41 44 24 26) (46 17 30 min 0 | 1 | 2 | 3 \rightarrow (18) \leftrightarrow (23)

35

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

Harald Räcke 116/127

8.3 Fibonacci Heaps 15. Nov. 2024
116/127

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

8.3 Fibonacci Heaps 15. Nov. 2024

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Case 2: heap-property is violated, but parent is not marked

- *▶* Decrease key-value of element *x* reference by *h*.
- \blacktriangleright If the heap-property is violated, cut the parent edge of x , and make *x* into a root.
- *▶* Adjust min-pointers, if necessary.
- *▶* Mark the (previous) parent of *x* (unless it's a root).

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Case 2: heap-property is violated, but parent is not marked

- *▶* Decrease key-value of element *x* reference by *h*.
- \blacktriangleright If the heap-property is violated, cut the parent edge of x , and make *x* into a root.
- *▶* Adjust min-pointers, if necessary.
- *▶* Mark the (previous) parent of *x* (unless it's a root).

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Case 3: heap-property is violated, and parent is marked

- *▶* Decrease key-value of element *x* reference by *h*.
- *▶* Cut the parent edge of *x*, and make *x* into a root.
- *▶* Adjust min-pointers, if necessary.
- *▶* Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Case 3: heap-property is violated, and parent is marked

- *▶* Decrease key-value of element *x* reference by *h*.
- *▶* Cut the parent edge of *x*, and make *x* into a root.
- *▶* Adjust min-pointers, if necessary.
- *▶* Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Actual cost:

- *▶* Constant cost for decreasing the value.
- *▶* Constant cost for each of *ℓ* cuts.
- **▶** Hence, cost is at most c_2 · $(\ell + 1)$, for some constant c_2 .

Amortized cost:

if $c \geq c_2$.

- \blacktriangleright $t' = t + \ell$, as every cut creates one new root.
- *►* $m' \leq m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- \triangleright Δ Φ ≤ ℓ + 2(− ℓ + 2) = 4 − ℓ
- *▶* Amortized cost is at most

```
m and m' ∶ number of c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = O(1) , n \text{ and } m' ∶ number of
```
8.3 Fibonacci Heaps 15. Nov. 2024 $\textcolor{red}{\bigcup}\textcolor{red}{\bigcup}\textcolor{red}{\bigcup}$ Harald Räcke 121/127

t and *t* ′ : number of trees before and after

marked nodes before and after operation.

operation.

Fibonacci Heaps: decrease-key*(*handle *h, v)*

Case 3: heap-property is violated, and parent is marked

- *▶* Decrease key-value of element *x* reference by *h*.
- *▶* Cut the parent edge of *x*, and make *x* into a root.
- *▶* Adjust min-pointers, if necessary.
- *▶* Execute the following:

 $p \leftarrow$ parent $[x]$; while (*p* is marked) Marking a node can be viewed as a first step towards becoming a root. . The first time x loses a child it is marked; the second time it loses a child it is made into a root.

- $pp \leftarrow$ parent $[p]$; cut of *p*; make it into a root; unmark it;
- $p \leftarrow pp$;
- if *p* is unmarked and not a root mark it;

Harald Räcke 120/127

8.3 Fibonacci Heaps 15. Nov. 2024

Lemma 1

Let x be a node with degree *k* and let y_1, \ldots, y_k denote the *children of x in the order that they were linked to x. Then*

degree*(yi)* ≥ (0 *if i* = 1 *i* − 2 *if i >* 1 The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root. 8.3 Fibonacci Heaps 15. Nov. 2024 Harald Räcke 123/127

8.3 Fibonacci Heaps

Proof

- *▶* When γ_i was linked to *x*, at least $\gamma_1, \ldots, \gamma_{i-1}$ were already linked to *x*.
- *▶* Hence, at this time degree*(x)* ≥ *i* − 1, and therefore also degree $(\gamma_i) \geq i - 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then γ_i has lost at most one child.
- *▶* Therefore, degree $(\gamma_i) \geq i 2$.

8.3 Fibonacci Heaps

- *▶* Let *s^k* be the minimum possible size of a sub-tree rooted at a node of degree *k* that can occur in a Fibonacci heap.
- *▶ s^k* monotonically increases with *k*
- \triangleright *s*₀ = 1 and *s*₁ = 2.

Let *x* be a degree *k* node of size s_k and let y_1, \ldots, y_k be its children.

 $s_k = 2 + \sum_{k=1}^{k}$ *i*=2 $size(y_i)$ ≥ 2 + X *k i*=2 *si*−² $= 2 +$ *k* X−2 *si i*=0 8.3 Fibonacci Heaps 15. Nov. 2024 $\begin{array}{|c|c|c|c|c|}\hline \text{H}}\end{array}$ Harald Räcke 125/127 (125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127 – 125/127

8.3 Fibonacci Heaps

Definition 2

Consider the following non-standard Fibonacci type sequence:

Facts:

1. $F_k \geq \phi^k$. 2. For $k \geq 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \geq F_k \geq \boldsymbol\phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

15. Nov. 2024

k=0:
$$
1 = F_0 \ge \Phi^0 = 1
$$

\nk=1: $2 = F_1 \ge \Phi^1 \approx 1.61$
\nk=2; $S = F_2 = 2 + 1 = 2 + F_0$
\nk=1 → k: $F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi + 1) = \Phi^k$
\nk=2: $3 = F_2 = 2 + 1 = 2 + F_0$
\nk=1 → k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$
\n15. Now. 2024
\n15. Now. 2024
\n17. Now. 2024
\n18.3 Fibonacci Heaps

