
8.2 Binomial Heaps

Operation

Binary
Heap BST

Binomial
Heap

Fibonacci
Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn log n 1
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Binomial Trees
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Binomial Trees

Properties of Binomial Trees

▶ Bk has 2k nodes.

▶ Bk has height k.

▶ The root of Bk has degree k.

▶ Bk has
(
k
ℓ

)
nodes on level ℓ.

▶ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.
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Binomial Trees

B4

B3

B2

B1

B0

Deleting the root of B5 leaves sub-trees B4, B3, B2, B1, and B0.

8.2 Binomial Heaps 15. Nov. 2024

Harald Räcke 101/117



Binomial Trees

B4

B3

B2

B1

B0

Deleting the leaf furthest from the root (in B5) leaves a path that

connects the roots of sub-trees B4, B3, B2, B1, and B0.
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Binomial Trees

Bk−1

Bk

(
k−1
ℓ

)

(
k−1
ℓ−1

)

The number of nodes on level ℓ in tree Bk is therefore

(
k− 1
ℓ − 1

)
+
(
k− 1
ℓ

)
=
(
k
ℓ

)
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Binomial Trees
0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bk, . . . , b1 is obtained by setting

the least significant 1-bit to 0.

The ℓ-th level contains nodes that have ℓ 1’s in their label.
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?

▶ The children of a node are arranged in a circular linked list.

▶ A child-pointer points to an arbitrary node within the list.

▶ A parent-pointer points to the parent node.

▶ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft
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8.2 Binomial Heaps

▶ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

▶ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .
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Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the binary

representation of n.
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Binomial Heap

Properties of a heap with n keys:

▶ Let n = bdbd−1, . . . , b0 denote binary representation of n.

▶ The heap contains tree Bi iff bi = 1.

▶ Hence, at most ⌊logn⌋ + 1 trees.

▶ The minimum must be contained in one of the roots.

▶ The height of the largest tree is at most ⌊logn⌋.
▶ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.

We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22
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8.2 Binomial Heaps

S1.merge(S2):
▶ Analogous to binary addition.

▶ Time is proportional to the number of trees in both heaps.

▶ Time: O(logn).
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8.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert(x):
▶ Create a new heap S′ that contains just the element x.

▶ Execute S.merge(S′).
▶ Time: O(logn).
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8.2 Binomial Heaps

S.minimum():
▶ Find the minimum key-value among all roots.

▶ Time: O(logn).
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8.2 Binomial Heaps

S. delete-min():

▶ Find the minimum key-value among all roots.

▶ Remove the corresponding tree Tmin from the heap.

▶ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

▶ Compute S.merge(S′).
▶ Time: O(logn).
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8.2 Binomial Heaps

S. decrease-key(handle h):

▶ Decrease the key of the element pointed to by h.

▶ Bubble the element up in the tree until the heap property is

fulfilled.

▶ Time: O(logn) since the trees have height O(logn).
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8.2 Binomial Heaps

S. delete(handle h):

▶ Execute S.decrease-key(h,−∞).
▶ Execute S.delete-min().
▶ Time: O(logn).
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