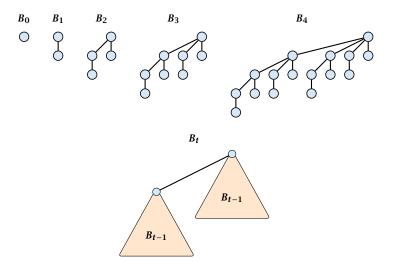
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1



Properties of Binomial Trees

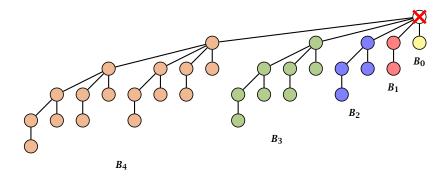
 \triangleright B_k has 2^k nodes.

- \triangleright B_k has 2^k nodes.
- \triangleright B_k has height k.

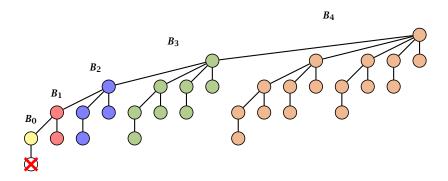
- \triangleright B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.

- \triangleright B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .

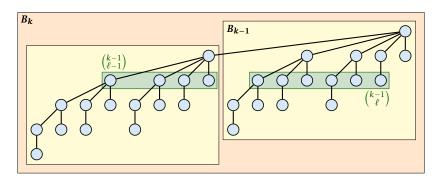
- \triangleright B_k has 2^k nodes.
- \triangleright B_k has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.



Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

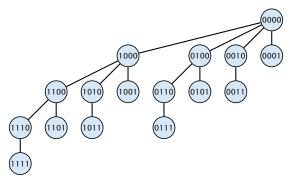


Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .



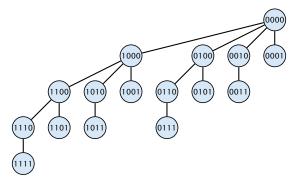
The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}$$



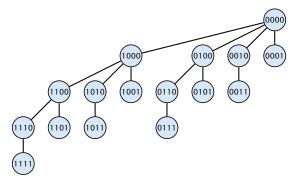


The binomial tree B_k is a sub-graph of the hypercube H_k .



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.



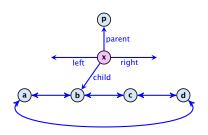
The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

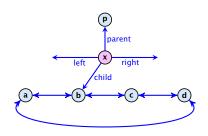
How do we implement trees with non-constant degree?

The children of a node are arranged in a circular linked list.



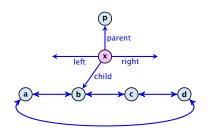
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.



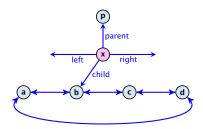
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.

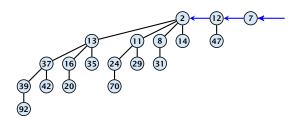


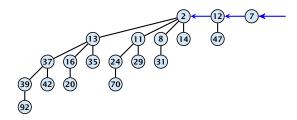
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).

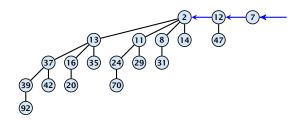


- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- ▶ We can add a child-tree *T* to a node *x* in constant time if we are given a pointer to *x* and a pointer to the root of *T*.



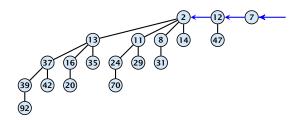


In a binomial heap the keys are arranged in a collection of binomial trees.



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

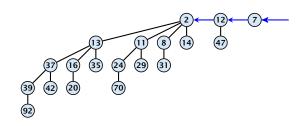
Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

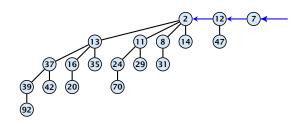
Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

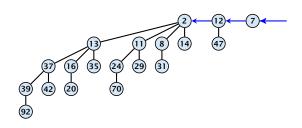


Properties of a heap with n keys:

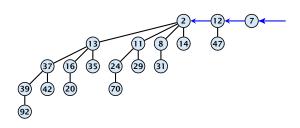
Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.



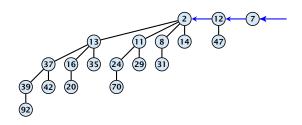
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.



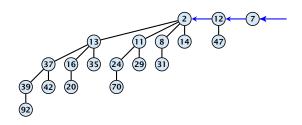
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.



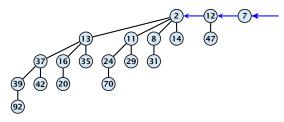
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



The merge-operation is instrumental for binomial heaps.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

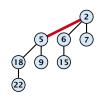
Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.



Binomial Heap: Merge

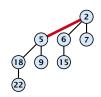
The merge-operation is instrumental for binomial heaps.

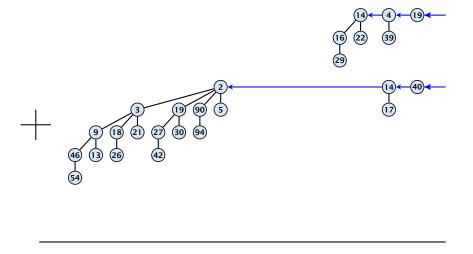
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

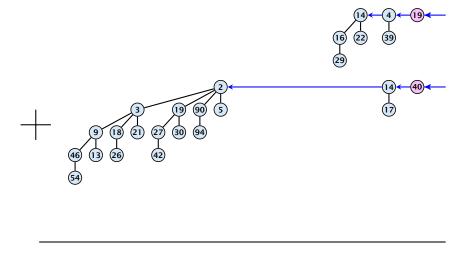
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

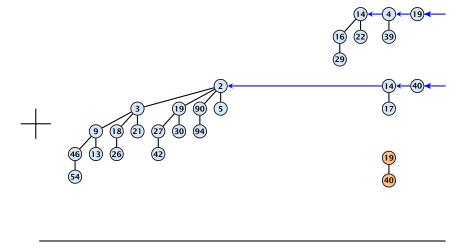
Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

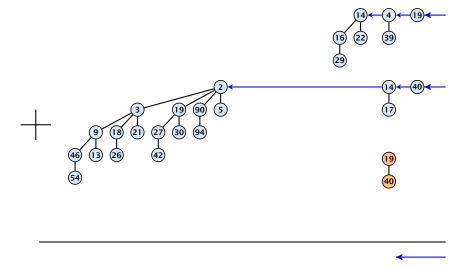
For more trees the technique is analogous to binary addition.

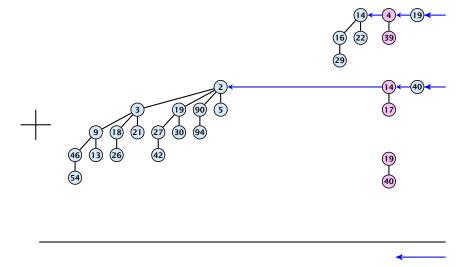


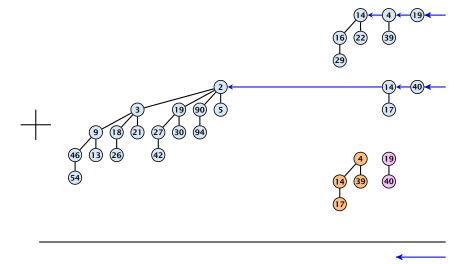


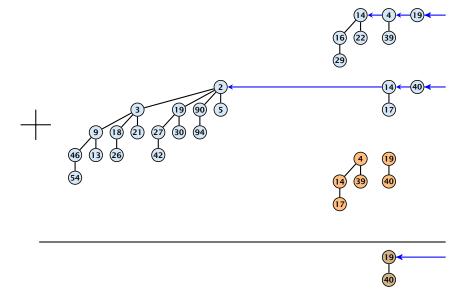


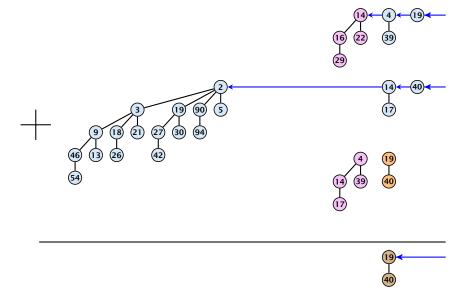


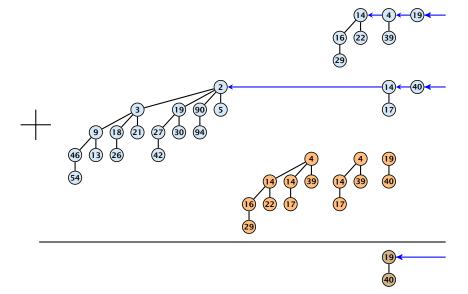


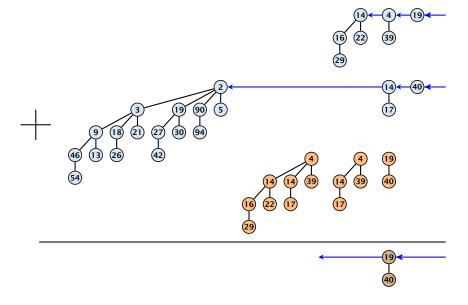


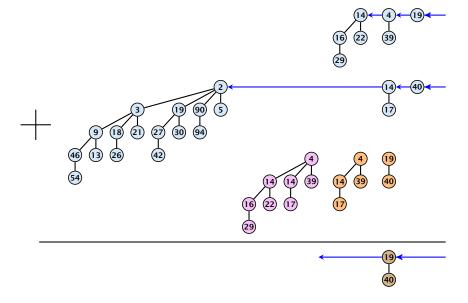


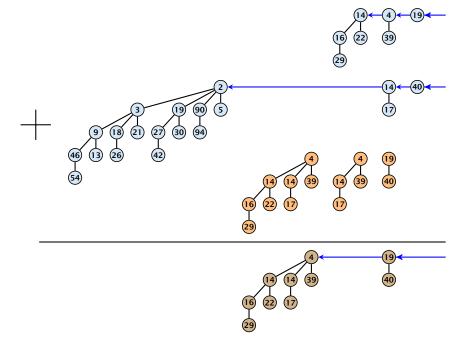


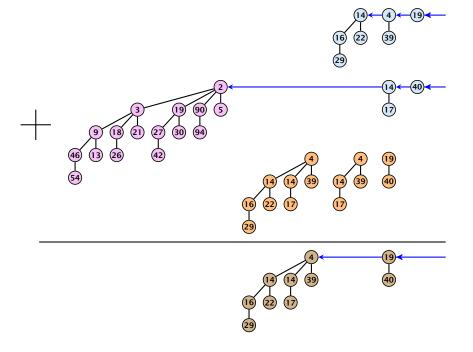


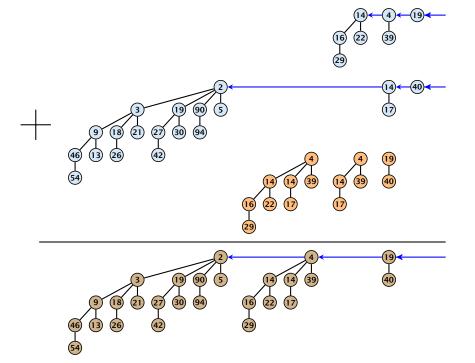


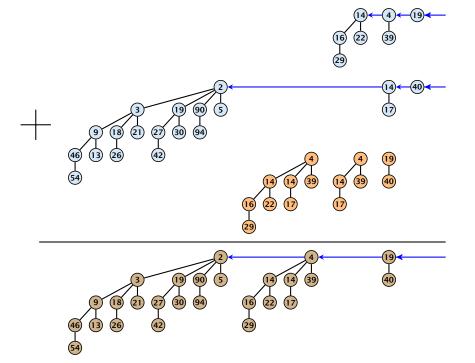












S_1 . merge(S_2):

Analogous to binary addition.

S_1 . merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

S_1 . merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- ▶ Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S. insert(x):

ightharpoonup Create a new heap S' that contains just the element x.

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- **Execute** S. merge(S').

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- **Execute** S. merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

S. minimum():

- Find the minimum key-value among all roots.
- ▶ Time: $O(\log n)$.

S. delete-min():

Find the minimum key-value among all roots.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- **Compute** S. merge(S').

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- **Compute** S. merge(S').
- ▶ Time: $O(\log n)$.

S. decrease-key(handle h):

S. decrease-key(handle h):

ightharpoonup Decrease the key of the element pointed to by h.

S. decrease-key(handle *h*):

- ▶ Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.

S. decrease-key(handle h):

- ▶ Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

S. delete(handle *h*):

S. delete(handle *h*):

► Execute *S*. decrease-key(h, $-\infty$).

S. delete(handle *h*):

- **Execute** *S*. decrease-key $(h, -\infty)$.
- Execute *S*. delete-min().

S. delete(handle *h*):

- **Execute** *S*. decrease-key $(h, -\infty)$.
- Execute *S*. delete-min().
- ▶ Time: $O(\log n)$.