8 Priority Queues

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

- S. build(x₁,..., x_n): Creates a data-structure that contains just the elements x₁,..., x_n.
- S. insert(x): Adds element x to the data-structure.
- ▶ element S. minimum(): Returns an element x ∈ S with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

• S. merge(S'): $S := S \cup S'$; $S' := \emptyset$.

חו	ſ	٦٢	ה	Harald	
ШĽ	9		Ш	Harald	Räcke

|||||||| Harald Räcke

15. Nov. 2024 90/145

15. Nov. 2024

92/145

Dijkstra's Shortest Path Algorithm Algorithm 39 Shortest-Path($G = (V, E, d), s \in V$) 1: **Input:** weighted graph G = (V, E, d); start vertex s; 2: **Output:** key-field of every node contains distance from *s*; 3: S.build(); // build empty priority queue 4: for all $v \in V \setminus \{s\}$ do v.key $\leftarrow \infty$; 5: 6: $h_v \leftarrow S.insert(v);$ 7: s.key \leftarrow 0; S.insert(s); 8: while *S*.is-empty() = false do $v \leftarrow S.delete-min();$ 9: 10: for all $x \in V$ s.t. $(v, x) \in E$ do 11: if x.key > v.key +d(v, x) then S.decrease-key(h_x , v. key + d(v, x)); 12: x.key $\leftarrow v$.key + d(v, x);13: 8 Priority Queues

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- **S. delete(***h***):** Deletes element specified through handle *h*.
- S. decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

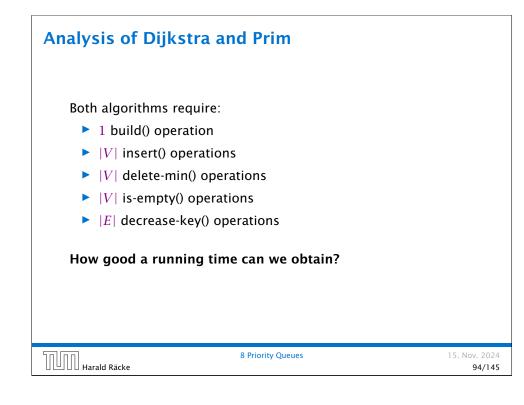
Harald Räcke

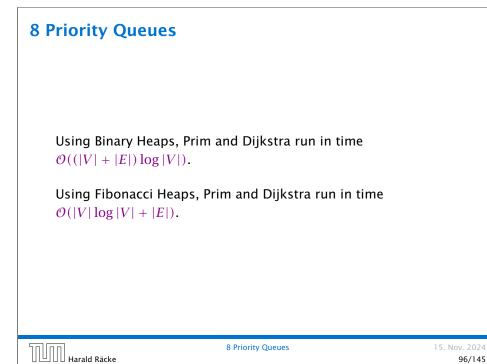
Harald Räcke

8 Priority Queues

15. Nov. 2024 91/145

٩lg	orithm 40 Prim-MST $(G = (V, E, d), s \in V)$
1:	Input: weighted graph $G = (V, E, d)$; start vertex s;
2:	Output: pred-fields encode MST;
3:	S.build(); // build empty priority queue
4:	for all $v \in V \setminus \{s\}$ do
5:	$v.\text{key} \leftarrow \infty;$
5:	$h_v \leftarrow S.insert(v);$
7:	s . key $\leftarrow 0$; S .insert (s) ;
8:	while S.is-empty() = false do
9:	$v \leftarrow S.delete-min();$
0:	for all $x \in V$ s.t. $\{v, x\} \in E$ do
1:	if x . key > $d(v, x)$ then
2:	S.decrease-key(h_x , $d(v, x)$);
3:	x .key $\leftarrow d(v, x);$
4:	x. pred $\leftarrow v$;





8 Priority Queues

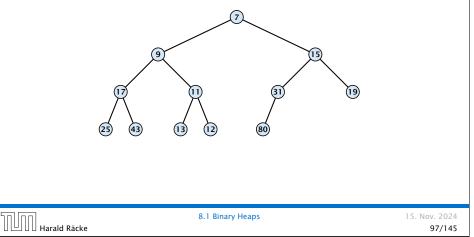
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	п	$n \log n$	$n\log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	п	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

* Fibonacci heaps only give an amortized guarantee. * The standard version of binary heaps is not addressable. Hence, it does not support a delete.

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



Binary Heaps

Operations:

- **minimum()**: return the root-element. Time O(1).
- **is-empty():** check whether root-pointer is null. Time O(1).

Harald Räcke	8.1 Binary Heaps	15. Nov. 2024 98/145

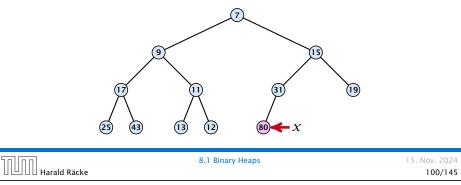
8.1 Binary Heaps

Maintain a pointer to the last element *x*.

► We can compute the successor of x (last element when an element is inserted) in time O(log n).

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

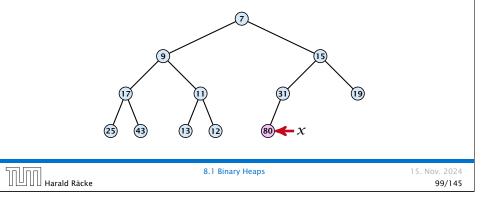


8.1 Binary Heaps

Maintain a pointer to the last element *x*.

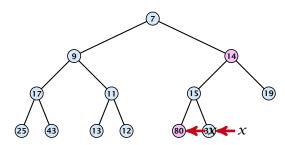
- We can compute the predecessor of x (last element when x is deleted) in time O(log n).
 - go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



Insert

- **1.** Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.

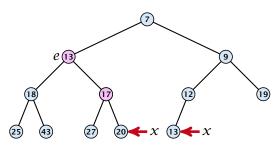


Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

Harald Räcke

Delete

- **1.** Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.



At its new position *e* may either travel up or down in the tree (but not both directions).

רח הח	8.1 Binary Heaps	15. Nov. 2024
UUU Harald Räcke		102/145

Binary Heaps

Operations:

- **minimum()**: Return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** Check whether root-pointer is null. Time O(1).
- **insert**(*k*): Insert at *x* and bubble up. Time $O(\log n)$.
- delete(h): Swap with x and bubble up or sift-down. Time O(log n).
- build(x₁,..., x_n): Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time O(n).

Binary Heaps

Operations:

- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert(k): insert at successor of x and bubble up. Time O(log n).
- delete(h): swap with x and bubble up or sift-down. Time O(log n).

Harald Räcke

8.1 Binary Heaps

Binary Heaps The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array The parent of *i*-th element is at position [^{*i*-1}/₂]. The left child of *i*-th element is at position 2*i* + 1. The right child of *i*-th element is at position 2*i* + 2. Finding the successor of *x* is much easier than in the description on the previous slide. Simply increase or decrease *x*. The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

15. Nov. 2024

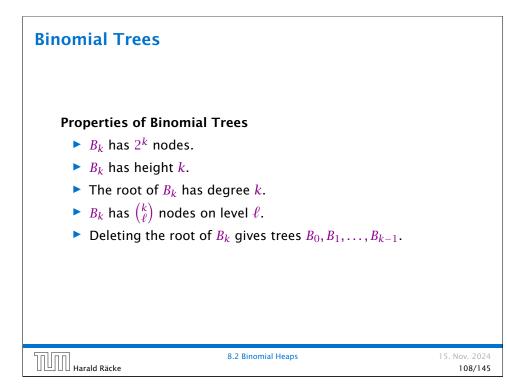
104/145

Harald Räcke

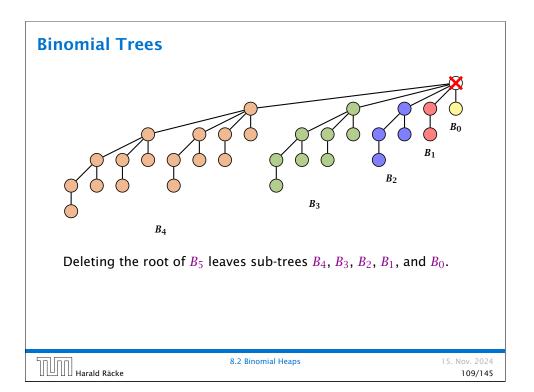
8.2 Binomial Heaps

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n\log n$	$n\log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	log n	1

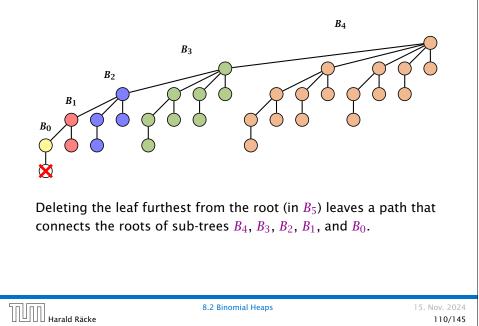
Harald Räcke	8.2 Binomial Heaps	15. Nov. 2024 106/145

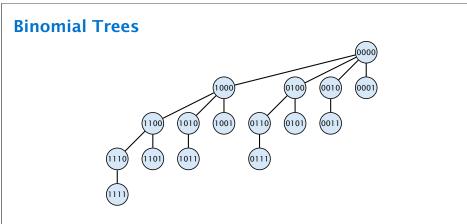


Binomial Trees B_4 B_0 B_1 **B**₃ B_2 \bigcirc φQ Bt B_{t-1} B_{t-1} 8.2 Binomial Heaps 15. Nov. 2024 Harald Räcke 107/145



Binomial Trees





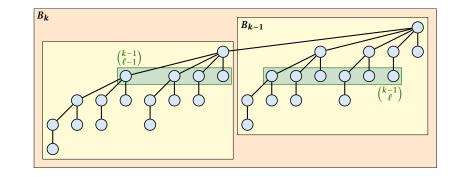
The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.

The $\ell\text{-th}$ level contains nodes that have ℓ 1's in their label.

15. Nov. 2024 112/145

Binomial Trees



The number of nodes on level ℓ in tree B_k is therefore

$\binom{k-1}{\ell-1}$		(k	- 1	1)	_	(k)
$(\ell - 1)$	+		ŀ)	=	ℓ

Harald Räcke

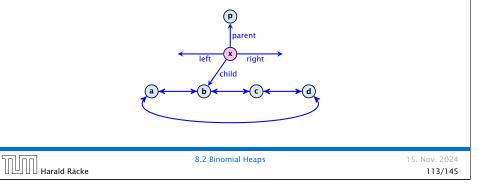
8.2 Binomial Heaps

15. Nov. 2024 111/145

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have siblings then x.left = x.right = x).



8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

החוהר	Harald Räcke	
	Harald Räcke	

8.2 Binomial Heaps

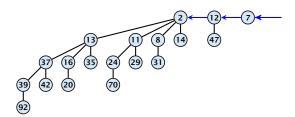
Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

Binomial Heap



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

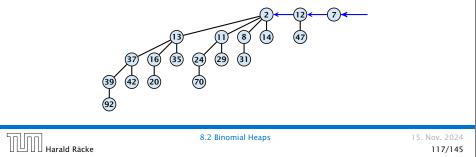
8.2 Binomial Heaps

15. Nov. 2024 115/145

Binomial Heap

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



Harald Räcke

15. Nov. 2024 116/145

15. Nov. 2024

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do a concatenation as we want to keep the trees in the list sorted according to size.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

החוחר	
	Harald Räcke

15. Nov. 2024 118/145

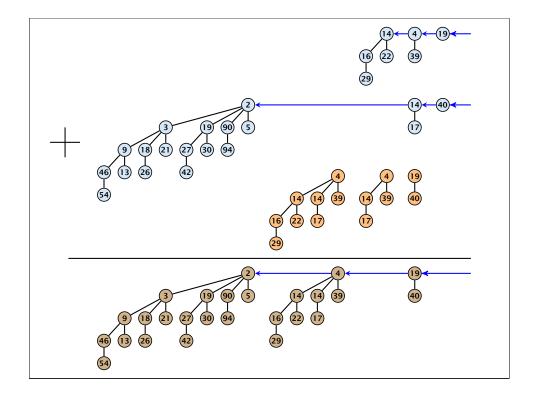
8.2 Binomial Heaps

*S*₁. merge(*S*₂):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

8.2 Binomial Heaps

▶ Time: $O(\log n)$.



8.2 Binomial Heaps	
All other operations can be reduced to merge().	
S. insert(x):	
Create a new heap S' that contains just the element x.	
Execute S .merge (S') .	
• Time: $\mathcal{O}(\log n)$.	

15. Nov. 2024 120/145

8.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps	15. Nov. 2024 122/145
	8.2 Binomial Heaps

8.2 Binomial Heaps

S. decrease-key(handle *h*):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

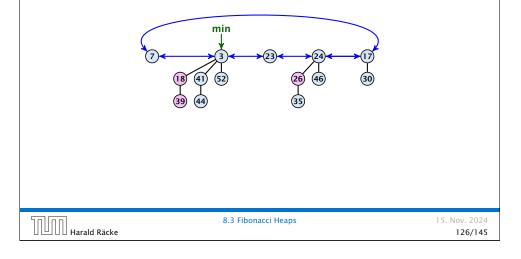
Harald Räcke	8.2 Binomial Heaps	15. Nov. 2024 123/145

8.2 Binomial Heap	S	
S. delete(handle h)	:	
Execute S. decr	ease-key $(h, -\infty)$.	
Execute S. delet	te-min().	
Time: $\mathcal{O}(\log n)$		
Harald Räcke	8.2 Binomial Heaps	15. Nov. 2024 125/145

15. Nov. 2024 124/145

Collection of trees that fulfill the heap property.

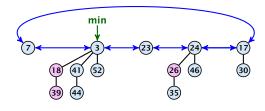
Structure is much more relaxed than binomial heaps.



8.3 Fibonacci Heaps

The potential function:

- t(S) denotes the number of trees in the heap.
- m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

8.3 Fibonacci Heaps Harald Räcke

8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x.degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x.marked that specifies whether x is marked or not.

8.3 Fibonacci Heaps

15. Nov. 2024 127/145

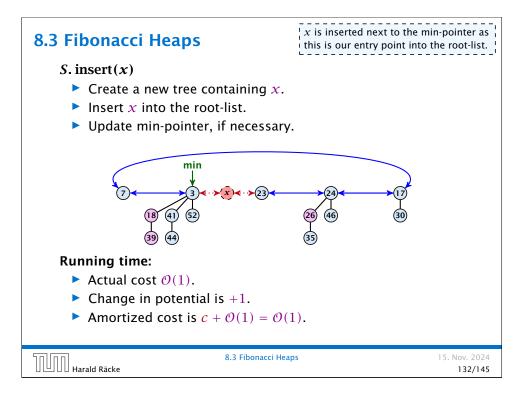
8.3 Fibonacci HeapsWe assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).To make this more explicit we use *c* to denote the amount of work that a unit of potential can pay for.

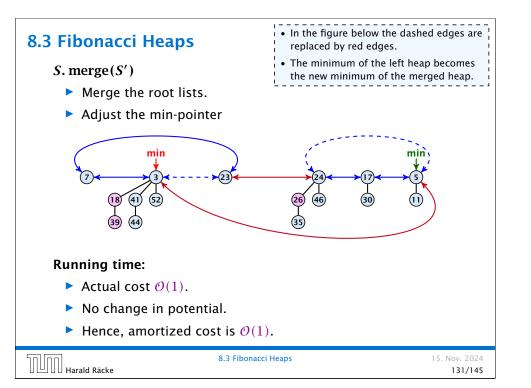
15. Nov. 2024

S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- ► No change in potential.
- Amortized cost $\mathcal{O}(1)$.

	8.3 Fibonacci Heaps	15. Nov. 2024
🛛 🕒 🛛 🖓 Harald Räcke		130/145

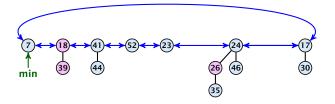




8.3 Fibonacci Heaps		$D(\min)$ is the number of children of the node that stores the minimum.
S. delete-min(x)		
► Delete minimum; a time: D(min) · O(add child-trees to heap; 1).	
Update min-pointe	er; time: $(t + D(\min)) \cdot c$	<i>D</i> (1).
7 min 7 3 (18 (4) 52 39 (44	23 24 24 24 26 46 35	30
	8.3 Fibonacci Heaps	15. Nov. 2024

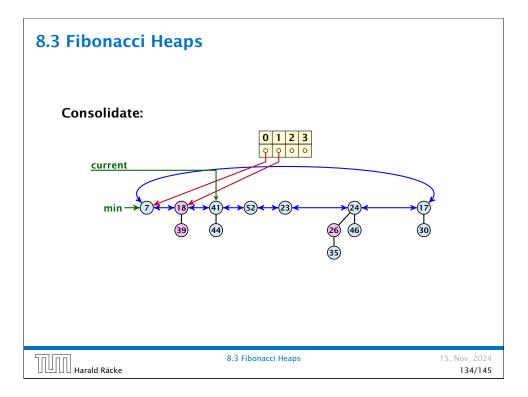
 $D(\min)$ is the number of children of the node that stores the minimum.

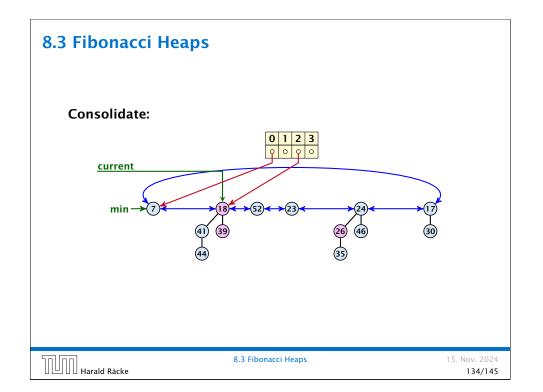
- S. delete-min(x)
 - Delete minimum; add child-trees to heap; time: D(min) · O(1).
- Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

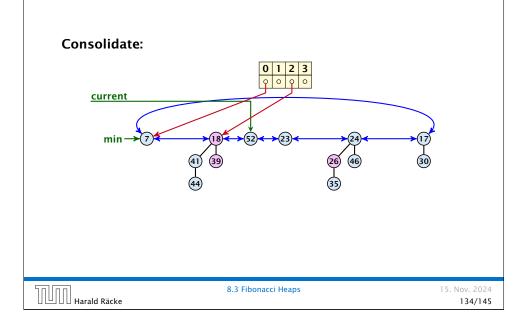


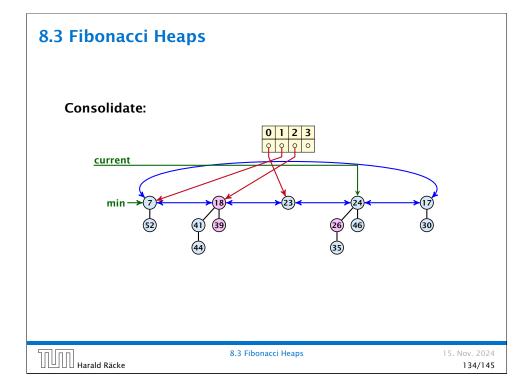
• Consolidate root-list so that no roots have the same degree. Time $t \cdot O(1)$ (see next slide).

החוחר	8.3 Fibonacci Heaps	15. Nov. 2024
UUU Harald Räcke		133/145

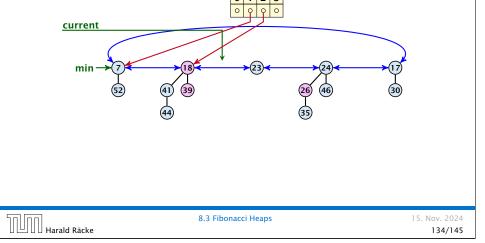


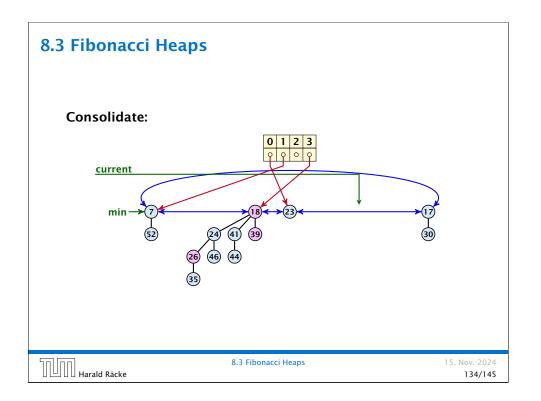


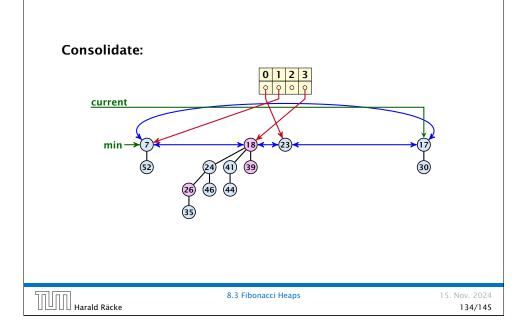




8.3 Fibonacci Heaps Consolidate:







8.3 Fibonacci Heaps *t* and *t'* den after the del *D_n* is an upp

t and t' denote the number of trees before and after the delete-min() operation, respectively. D_n is an upper bound on the degree (i.e., number of children) of a tree node.

15. Nov. 2024

135/145

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- ► Actual cost for a delete-min is at most O(1) · (D_n + t). Hence, there exists c₁ s.t. actual cost is at most c₁ · (D_n + t).

Amortized cost for delete-min()

- ▶ $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

```
c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)
```

```
\leq (c_1+c)D_n+(c_1-c)t+c \leq 2c(D_n+1) \leq \mathcal{O}(D_n)
```

for ${\color{black}{c}} \geq {\color{black}{c}}_1$.

```
Harald Räcke
```

8.3 Fibonacci Heaps

8.3 Fibonacci Heaps Consolidate:

8.3 Fibonacci Heaps

Harald Räcke

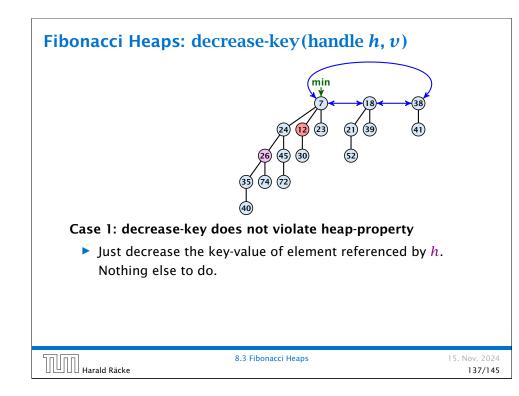
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

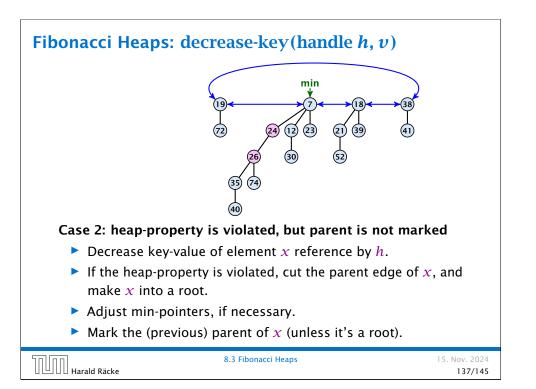
8.3 Fibonacci Heaps

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

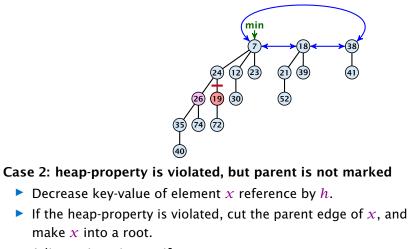
8.3 Fibonacci Heaps

15. Nov. 2024



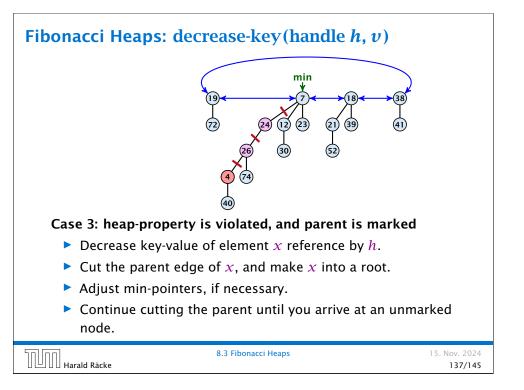


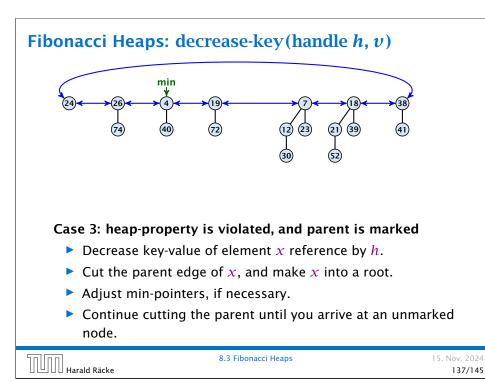
Fibonacci Heaps: decrease-key(handle h, v)



- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Harald Räcke	8.3 Fibonacci Heaps	15. Nov. 2024
UUU Harald Räcke		137/145





Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- \triangleright Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

if $c \geq c_2$.

Harald Räcke

- ▶ $t' = t + \ell$, as every cut creates one new root.
- $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.

8.3 Fibonacci Heaps

- $\blacktriangleright \Delta \Phi \leq \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

```
trees before and after
                                                                  operation.
c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = \mathcal{O}(1) + m \text{ and } m': number of
                                                                  marked nodes before
                                                                  ' and after operation.
```

15. Nov. 2024

139/145

t and t': number of

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following: $p \leftarrow \text{parent}[x];$

Marking a node can be viewed as a first step towards becoming a root. The first time x loses a child it is marked; the second time it loses a child it is made into a root.

15 Nov 2024

138/145

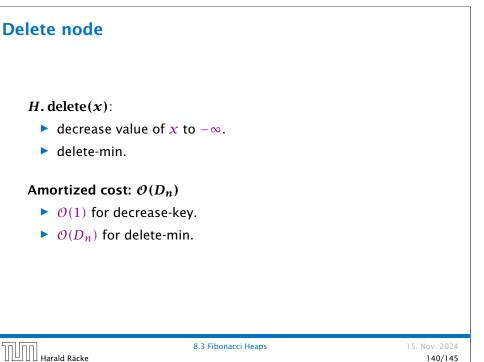
$pp \leftarrow parent[p];$ cut of p; make it into a root; unmark it;

 $p \leftarrow pp$;

while (p is marked)

if p is unmarked and not a root mark it;

8.3 Fibonacci Heaps Harald Räcke



Lemma 1

Let x be a node with degree k and let $y_1, ..., y_k$ denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if \ i = 1\\ i - 2 & if \ i > 1 \end{cases}$$
The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

8.3 Fibonacci Heaps

15. Nov. 2024

141/145

8.3 Fibonacci Heaps

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright *s*_k monotonically increases with *k*
- ▶ $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

 $s_{k} = 2 + \sum_{i=2}^{k} \operatorname{size}(y_{i})$ $\geq 2 + \sum_{i=2}^{k} s_{i-2}$ $= 2 + \sum_{i=0}^{k-2} s_{i}$ 8.3 Fibonacci Heaps 15. Nov. 2024 143/145

8.3 Fibonacci Heaps

Proof

- When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- ► Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

החתר	8.3 Fibonacci Heaps	15. Nov. 2024
Harald Räcke		142/145

8.3 Fibonacci Heaps

$\phi = \frac{1}{2}(1 + \sqrt{5})$ denotes the <i>golden</i>	ratio.'
$1 - \frac{1}{2}$	
Note that $\phi^2 = 1 + \phi$.	1

Definition 2

Consider the following non-standard Fibonacci type sequence:

	1	if $k = 0$
$F_k = \langle$	2	if $k = 1$
	$F_{k-1} + F_{k-2}$	if $k \ge 2$

Facts:

1. $F_k \ge \phi^k$. **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

Harald Räcke

$$k=0: \qquad 1 = F_0 \ge \Phi^0 = 1$$

$$k=1: \qquad 2 = F_1 \ge \Phi^1 \approx 1.61 \qquad \Phi^2$$

$$k-2, k-1 \rightarrow k: \quad F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi+1) = \Phi^k$$

$$k=2: \qquad 3 = F_2 = 2 + 1 = 2 + F_0$$

$$k-1 \rightarrow k: \qquad F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$$

$$k-1 \rightarrow k: \qquad F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$$

$$k-1 \rightarrow k: \qquad F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$$

$$k-1 \rightarrow k: \qquad F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$$

Priority	Queues	
Bibliogra [CLRS90]	u phy Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: <i>Introduction to algorithms (3rd ed.),</i> MIT Press and McGraw-Hill, 2009	
[MS08]	Kurt Mehlhorn, Peter Sanders: <i>Algorithms and Data Structures — The Basic Toolbox</i> , Springer, 2008	
	aps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fibonacc e covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial heaps.	i
	5 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps with in Exercise 6.11.	5
	8.3 Fibonacci Heaps d Räcke	15. Nov. 2024 146/145

