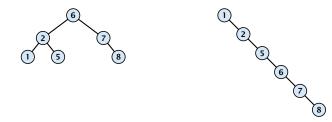
7 Dictionary

Dictionary:

- S. insert(x): Insert an element x.
- ► *S*. delete(*x*): Delete the element pointed to by *x*.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.



7.1 Binary Search Trees

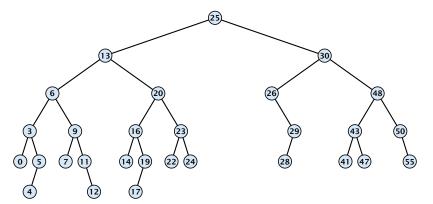
An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than key[v] and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

7.1 Binary Search Trees

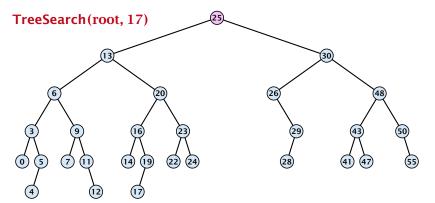
2. Dec. 2024 129/330


7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

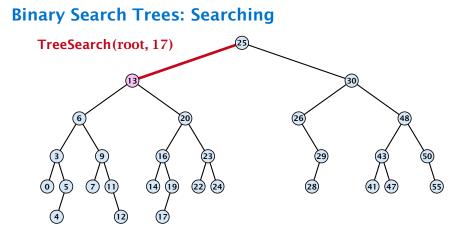
- T. insert(x)
- ► T. delete(x)
- ► T. search(k)
- ► T. successor(x)
- ► T. predecessor(x)
- ► T. minimum()
- T. maximum()

Binary Search Trees: Searching



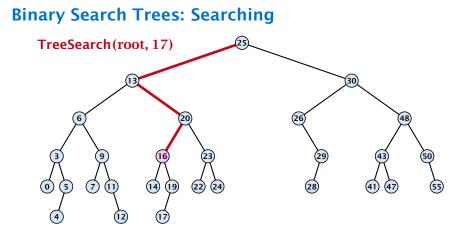
Algorithm 1 TreeSearch(x, k)

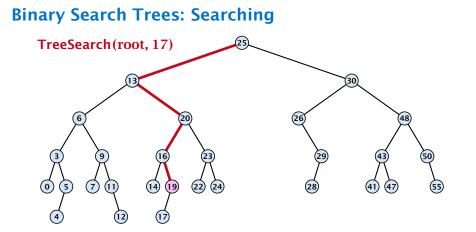
- 1: if x = null or k = key[x] return x
- 2: **if** *k* < key[*x*] **return** TreeSearch(left[*x*], *k*)
- 3: **else return** TreeSearch(right[*x*], *k*)

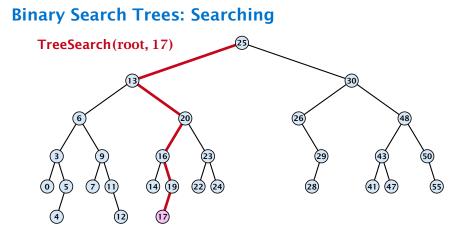

Binary Search Trees: Searching

Algorithm 1 TreeSearch(x, k)

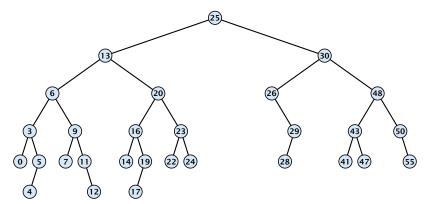

- 1: if x = null or k = key[x] return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)


- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)


- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)

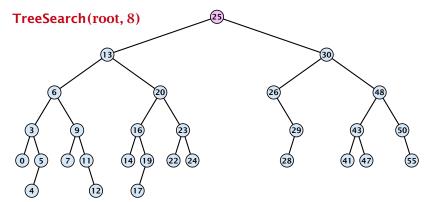

- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)

- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)



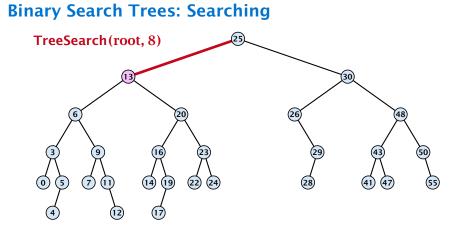
- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)

Binary Search Trees: Searching

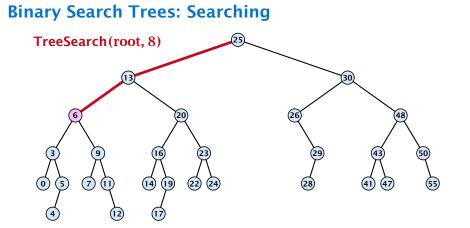


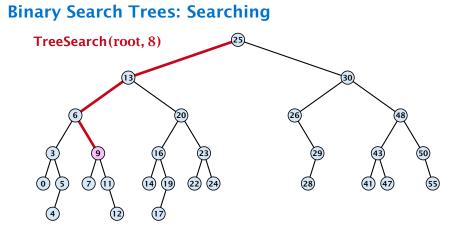
Algorithm 1 TreeSearch(x, k)

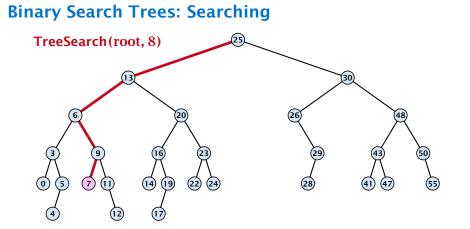
- 1: if x = null or k = key[x] return x
- 2: **if** *k* < key[*x*] **return** TreeSearch(left[*x*], *k*)
- 3: **else return** TreeSearch(right[*x*], *k*)

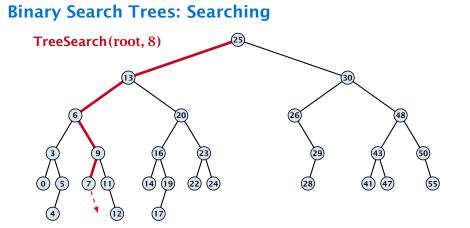


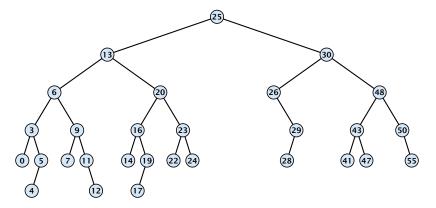
Binary Search Trees: Searching


- 1: if x = null or k = key[x] return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)

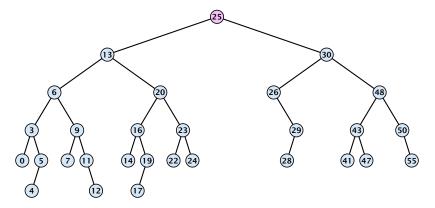

- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)


- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)


- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)


- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)

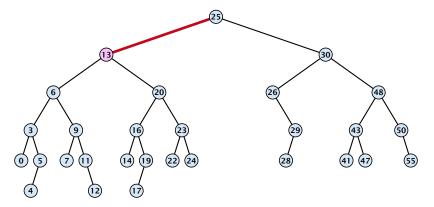
- 1: if x = null or k = key[x] return x
- 2: if k < key[x] return TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[*x*], *k*)



Algorithm 2 TreeMin(*x*)

- 1: if x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

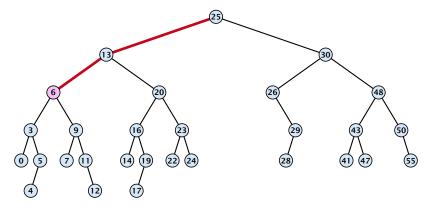
7.1 Binary Search Trees



Algorithm 2 TreeMin(*x*)

- 1: if x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

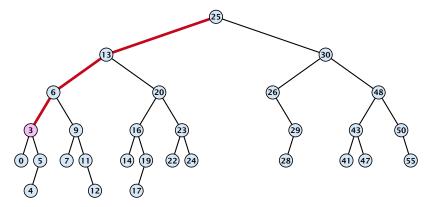
7.1 Binary Search Trees



Algorithm 2 TreeMin(*x*)

- 1: if x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

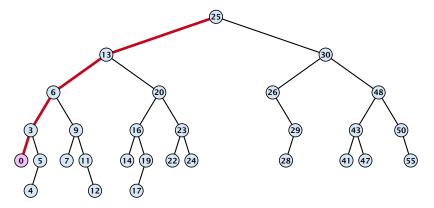
7.1 Binary Search Trees



Algorithm 2 TreeMin(*x*)

- 1: if x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

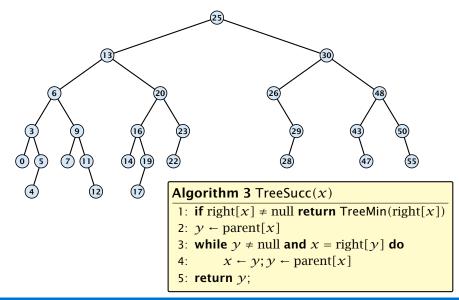
7.1 Binary Search Trees



Algorithm 2 TreeMin(*x*)

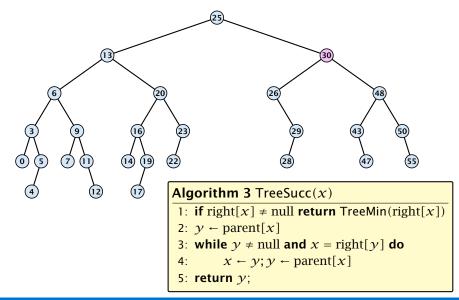
- 1: if x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

7.1 Binary Search Trees

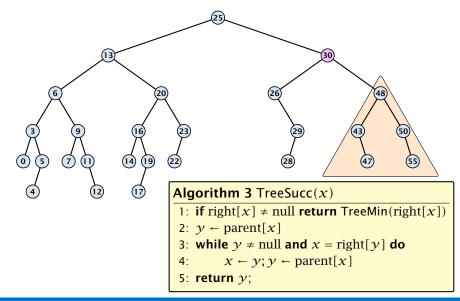


Algorithm 2 TreeMin(*x*)

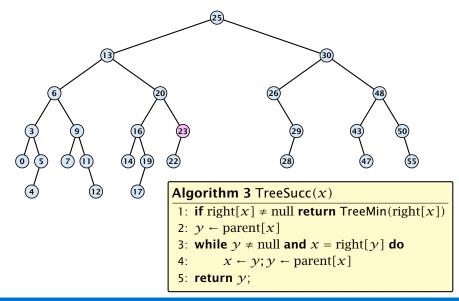
- 1: if x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])



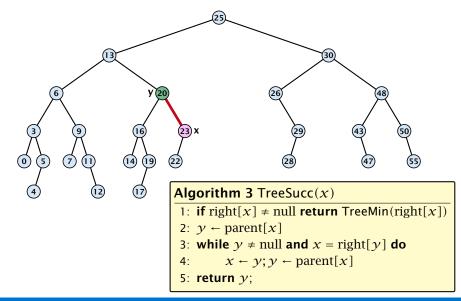
7.1 Binary Search Trees



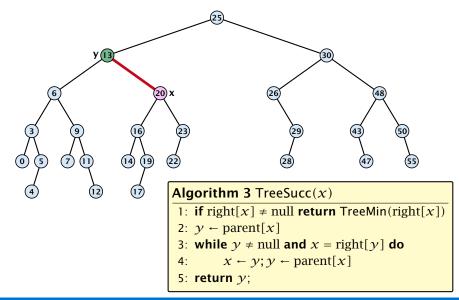
7.1 Binary Search Trees



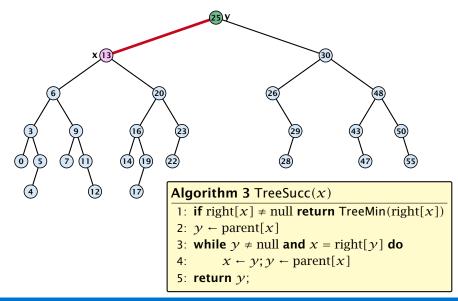
7.1 Binary Search Trees



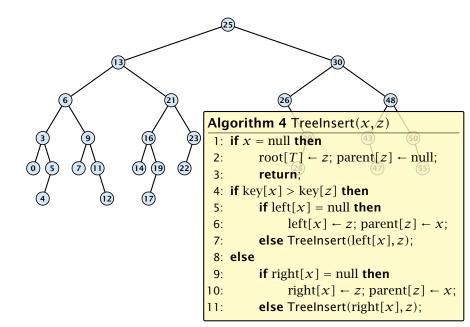
7.1 Binary Search Trees



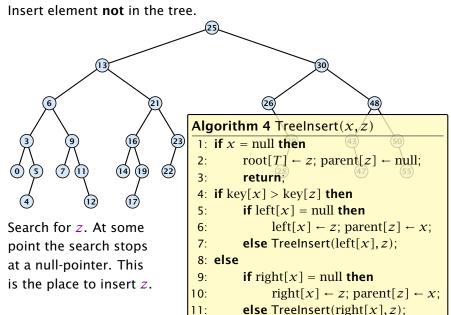
7.1 Binary Search Trees

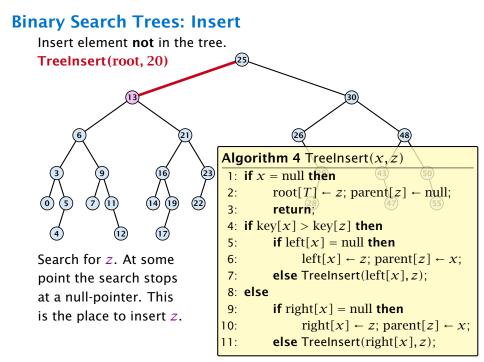


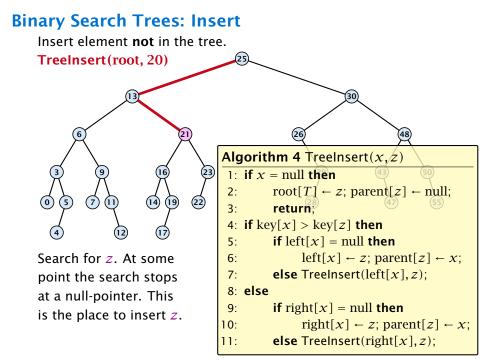
7.1 Binary Search Trees

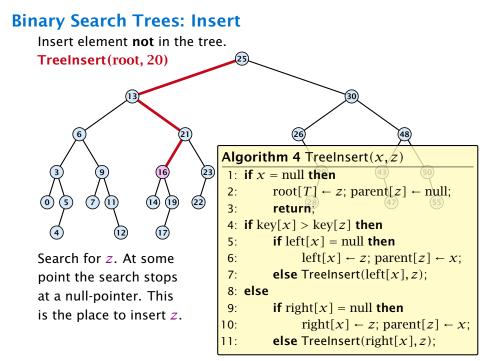

7.1 Binary Search Trees

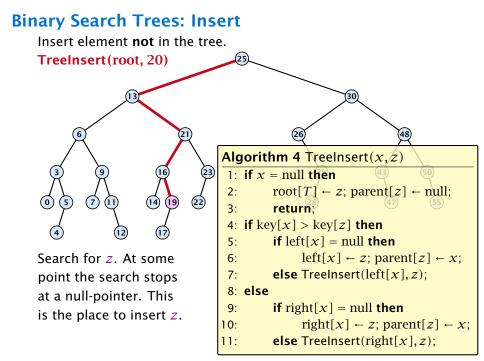
7.1 Binary Search Trees

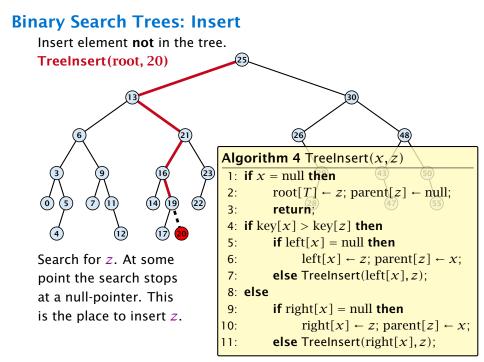

Binary Search Trees: Insert

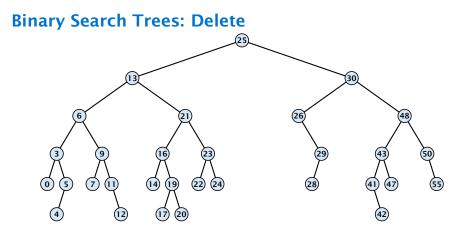

Insert element **not** in the tree. 13 30 26 48 Algorithm 4 TreeInsert(x, z) 23 1: if x =null then 2: $root[T] \leftarrow z; parent[z] \leftarrow null;$ \bigcirc 5 $\overline{7}$ îî (14) (19) 22 3: return 4: if key[x] > key[z] then 5: if left[x] = null then left[x] $\leftarrow z$; parent[z] $\leftarrow x$; 6: 7: else Treelnsert(left[x], z); 8: else **if** right[x] = null **then** 9: 10: right[x] \leftarrow z; parent[z] \leftarrow x; **else** Treelnsert(right[x], z); 11:

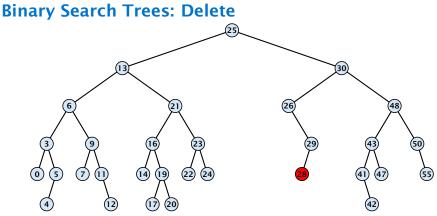

Binary Search Trees: Insert

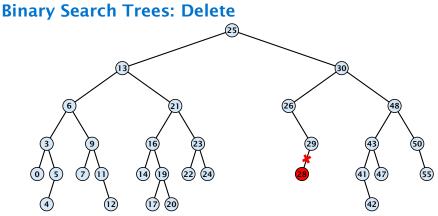

Binary Search Trees: Insert




Binary Search Trees: Insert Insert element **not** in the tree. TreeInsert(root, 20) 30 48 Algorithm 4 TreeInsert(x, z) 1: if x =null then 2: $root[T] \leftarrow z; parent[z] \leftarrow null;$ \bigcirc 5) $\overline{7}$ (14) (19) (22) return: 3: 4: if key[x] > key[z] then 5: **if** left[x] = null **then** left[x] $\leftarrow z$; parent[z] $\leftarrow x$; Search for z. At some 6: 7: else Treelnsert(left[x], z); point the search stops 8: else at a null-pointer. This **if** right[x] = null **then** 9: is the place to insert z. right[x] \leftarrow z; parent[z] \leftarrow x; 10: **else** Treelnsert(right[x],z); 11:

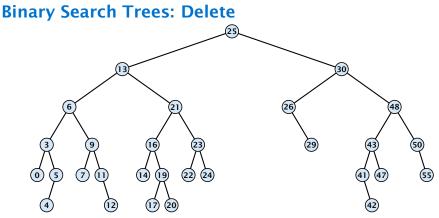






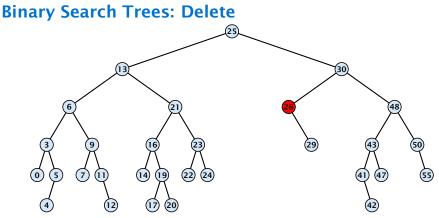
Case 1:

Element does not have any children


Simply go to the parent and set the corresponding pointer to null.

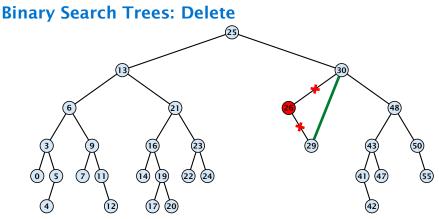
Case 1:

Element does not have any children


Simply go to the parent and set the corresponding pointer to null.

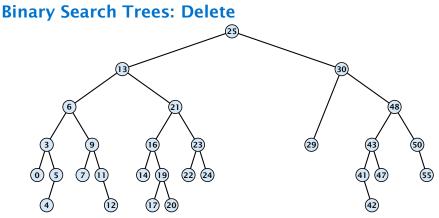
Case 1:

Element does not have any children


Simply go to the parent and set the corresponding pointer to null.

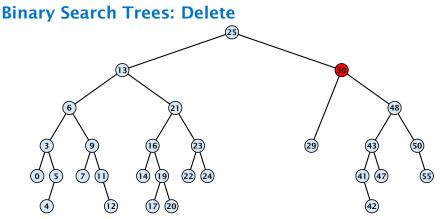
Case 2:

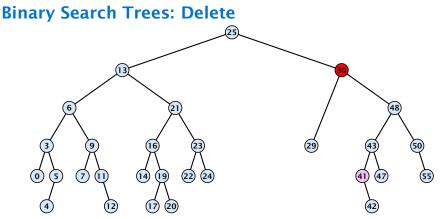
Element has exactly one child


Splice the element out of the tree by connecting its parent to its successor.

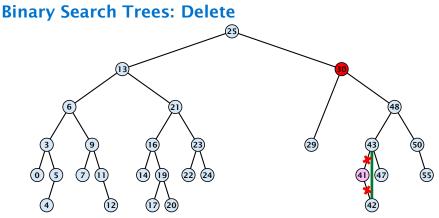
Case 2:

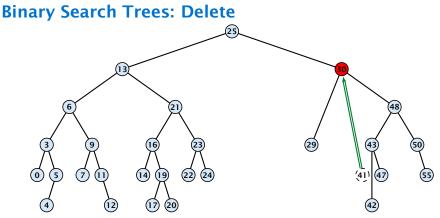
Element has exactly one child

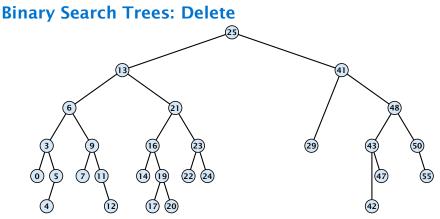

Splice the element out of the tree by connecting its parent to its successor.

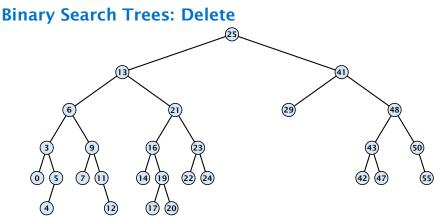

Case 2:

Element has exactly one child


Splice the element out of the tree by connecting its parent to its successor.


- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor


- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor


- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

```
Algorithm 9 TreeDelete(z)
 1: if left[z] = null or right[z] = null
          then \gamma \leftarrow z else \gamma \leftarrow TreeSucc(z); select \gamma to splice out
 2:
 3: if left[\gamma] \neq null
 4:
          then x \leftarrow \text{left}[y] else x \leftarrow \text{right}[y]; x is child of y (or null)
 5: if x \neq null then parent[x] \leftarrow parent[y]; parent[x] is correct
 6: if parent[\gamma] = null then
 7: \operatorname{root}[T] \leftarrow x
 8: else
 9: if \gamma = \text{left}[\text{parent}[\gamma]] then
                                                                    fix pointer to x
10:
                 left[parent[\gamma]] \leftarrow x
    else
11:
12.
        right[parent[\gamma]] \leftarrow x
13: if \gamma \neq z then copy \gamma-data to z
```


7.1 Binary Search Trees

2. Dec. 2024 138/330

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

All operations on a binary search tree can be performed in time O(h), where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

All operations on a binary search tree can be performed in time O(h), where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

All operations on a binary search tree can be performed in time O(h), where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.

Definition 12

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.

Definition 12

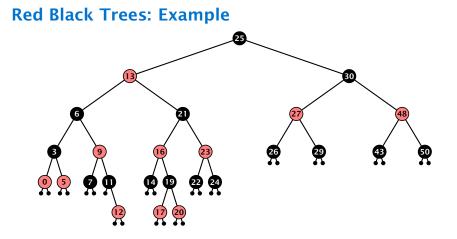
- 1. The root is black.
- 2. All leaf nodes are black.

Definition 12

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.

Definition 12

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.


Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

2. Dec. 2024 140/330

Lemma 13

A red-black tree with n internal nodes has height at most $O(\log n)$.

Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 14

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 14

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 15

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Proof of Lemma 15.

7.2 Red Black Trees

2. Dec. 2024 142/330

Proof of Lemma 15.

Induction on the height of v.

7.2 Red Black Trees

2. Dec. 2024 142/330

Proof of Lemma 15.

Induction on the height of v.

base case (height(v) = 0)

If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.

Proof of Lemma 15.

Induction on the height of v.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.

Proof of Lemma 15.

Induction on the height of *v*.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- The sub-tree rooted at v contains $0 = 2^{bh(v)} 1$ inner vertices.

Proof (cont.)

7.2 Red Black Trees

Proof (cont.)

induction step

Supose v is a node with height(v) > 0.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- ► These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.
- **b** By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- ► These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.
- **b** By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1}-1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof of Lemma 13.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

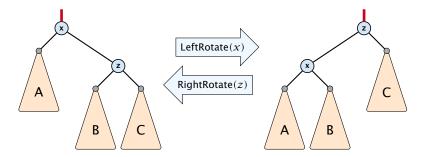
Hence, $h \le 2\log(n+1) = \mathcal{O}(\log n)$.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

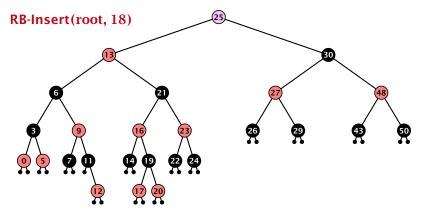


We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:

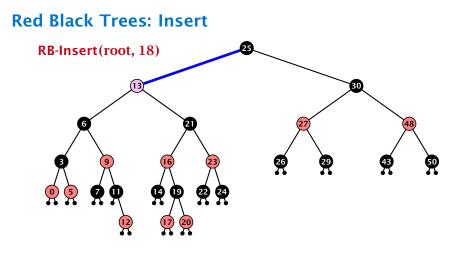
7.2 Red Black Trees



Insert:

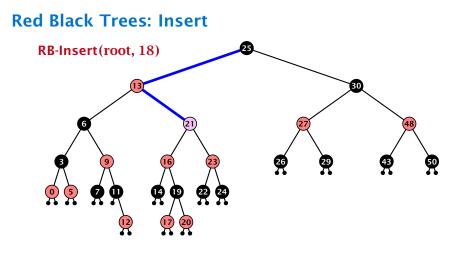
- first make a normal insert into a binary search tree
- then fix red-black properties

7.2 Red Black Trees

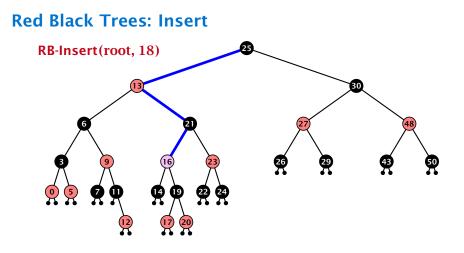


Insert:

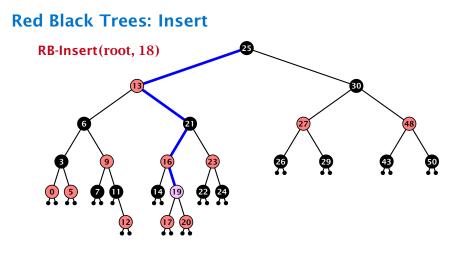
- first make a normal insert into a binary search tree
- then fix red-black properties


7.2 Red Black Trees

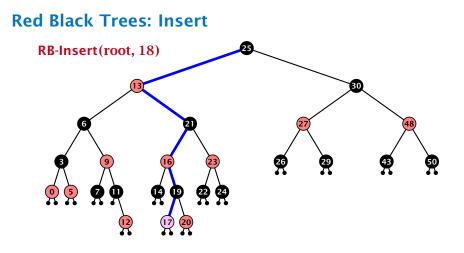
- first make a normal insert into a binary search tree
- then fix red-black properties


7.2 Red Black Trees

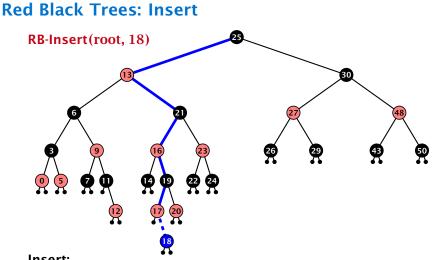
- first make a normal insert into a binary search tree
- then fix red-black properties


7.2 Red Black Trees

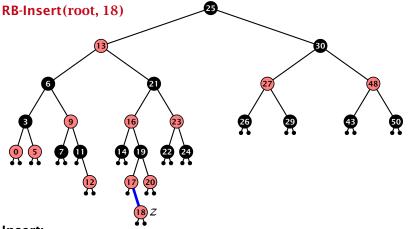
- first make a normal insert into a binary search tree
- then fix red-black properties


7.2 Red Black Trees

- first make a normal insert into a binary search tree
- then fix red-black properties


7.2 Red Black Trees

- first make a normal insert into a binary search tree
- then fix red-black properties


7.2 Red Black Trees

- first make a normal insert into a binary search tree
- then fix red-black properties

7 2 Red Black Trees

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

7.2 Red Black Trees

Invariant of the fix-up algorithm:

z is a red node

7.2 Red Black Trees

- z is a red node
- the black-height property is fulfilled at every node

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

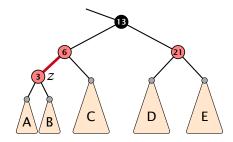
If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Alg	Algorithm 10 InsertFix (z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if <i>z</i> = right[parent[<i>z</i>]] then		
9:	$z \leftarrow p[z]$; LeftRotate (z) ;		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate(gp[z]);		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

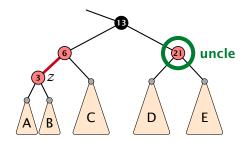
Algorithm 10 InsertFix(<i>z</i>)			
1: while parent[z] \neq null and col[parent[z]] = red do			
2:	if $parent[z] = left[gp[z]]$ then z in left subtree of grandparent		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	<pre>if z = right[parent[z]] then</pre>		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13: C	$ol(root[T]) \leftarrow black;$		

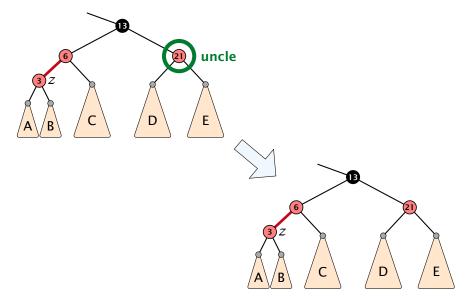
Alg	Algorithm 10 InsertFix (z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then Case 1: uncle red		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if $z = right[parent[z]]$ then		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

Alg	Algorithm 10 InsertFix (z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else Case 2: uncle black		
8:	if $z = right[parent[z]]$ then		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

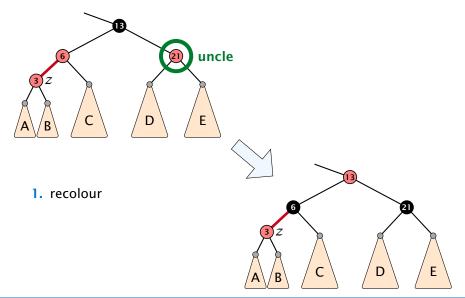


Alg	Algorithm 10 InsertFix(z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if $z = right[parent[z]]$ then 2a: z right child		
9:	$z \leftarrow p[z]$; LeftRotate(z);		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

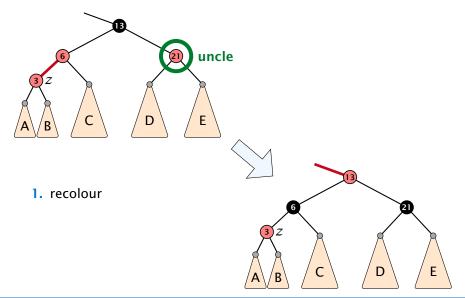

Algorithm 10 InsertFix (z)	
1: while $parent[z] \neq null$ and $col[parent[z]] = red$ do	
2: if parent[z] = left[g	p[z]] then
3: $uncle \leftarrow right[gr$	andparent[z]]
4: if $col[uncle] = re$	ed then
5: $\operatorname{col}[p[z]] \leftarrow$	black; $col[u] \leftarrow black;$
6: $\operatorname{col}[\operatorname{gp}[z]] \leftarrow$	- red; $z \leftarrow \text{grandparent}[z];$
7: else	
8: if $z = \operatorname{right}[]$	parent[z]] then
9: $z \leftarrow p[z]$; LeftRotate (z) ;
10: $\operatorname{col}[p[z]] \leftarrow$	black; $col[gp[z]] \leftarrow red; 2b: z$ left child
11: RightRotate	gp[z]);
12: else same as then-clause but right and left exchanged	
13: $col(root[T]) \leftarrow black;$	



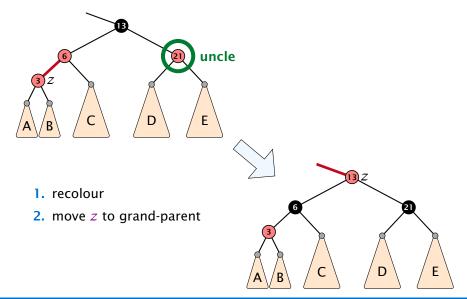
7.2 Red Black Trees



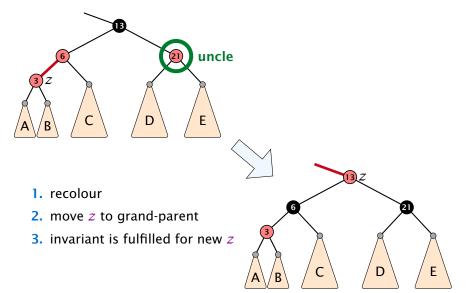
7.2 Red Black Trees



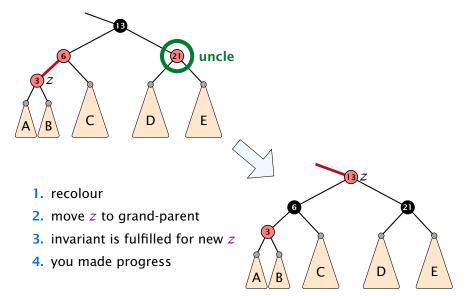
7.2 Red Black Trees



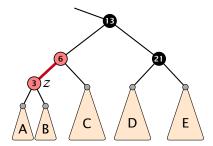
7.2 Red Black Trees



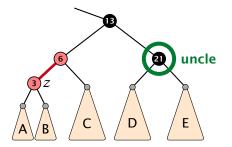
7.2 Red Black Trees



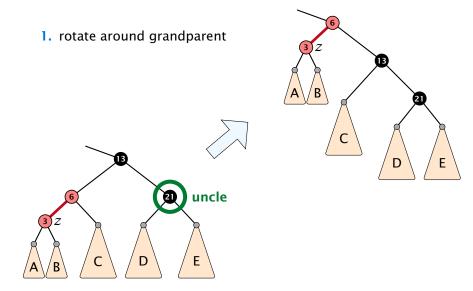
7.2 Red Black Trees



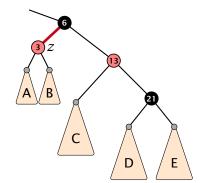
7.2 Red Black Trees

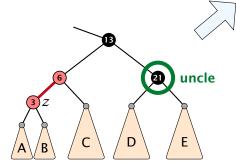


7.2 Red Black Trees



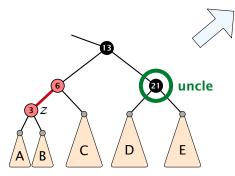
7.2 Red Black Trees

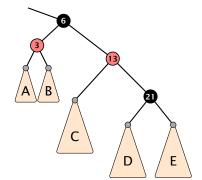

7.2 Red Black Trees



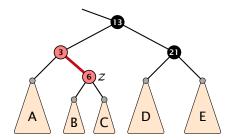
7.2 Red Black Trees

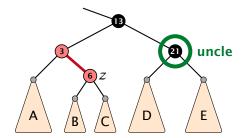
- 1. rotate around grandparent
- re-colour to ensure that black height property holds



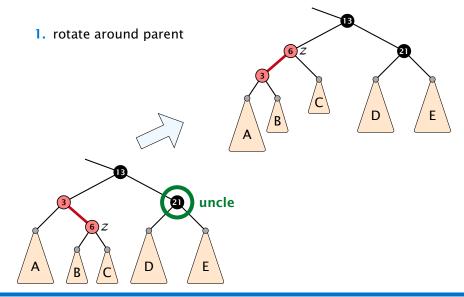


7.2 Red Black Trees

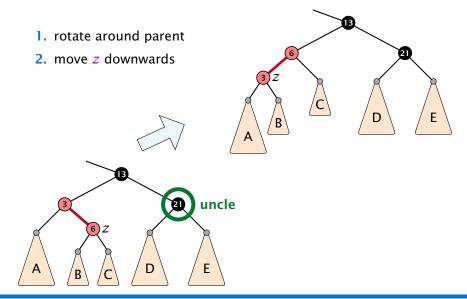

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree



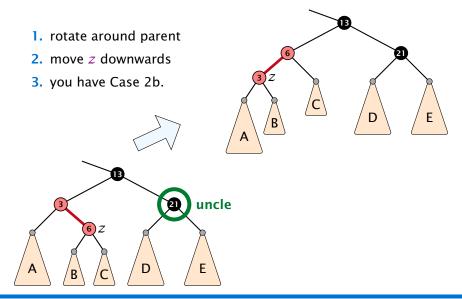
7.2 Red Black Trees



7.2 Red Black Trees



7.2 Red Black Trees



7.2 Red Black Trees

7.2 Red Black Trees

7.2 Red Black Trees

Running time:

Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black tree$

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black tree$
- Case 2b → red-black tree

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

7.2 Red Black Trees

First do a standard delete.

7.2 Red Black Trees

First do a standard delete.

If the spliced out node x was red everything is fine.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

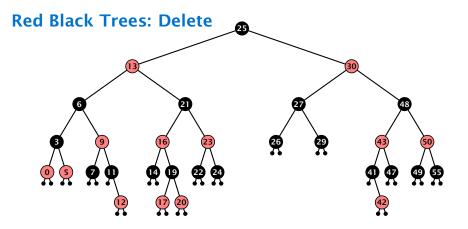
Parent and child of x were red; two adjacent red vertices.

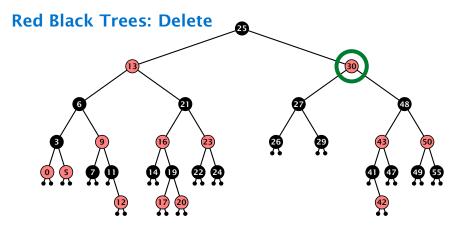
First do a standard delete.

If the spliced out node x was red everything is fine.

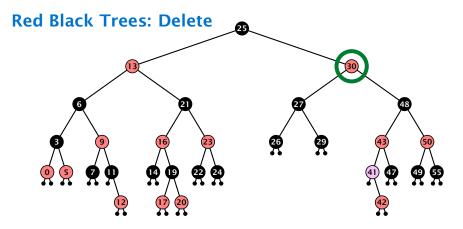
If it was black there may be the following problems.

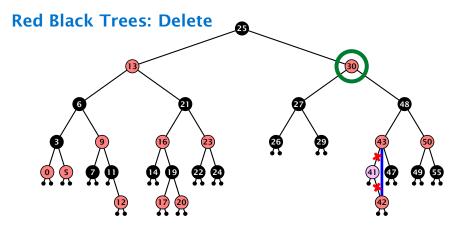
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.

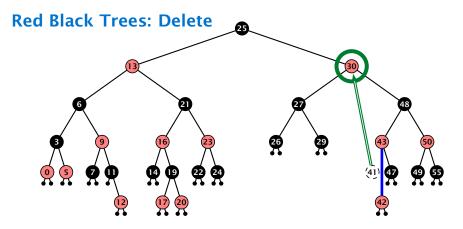

First do a standard delete.

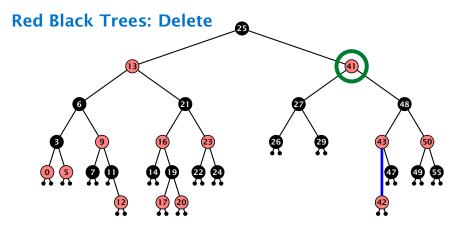

If the spliced out node x was red everything is fine.

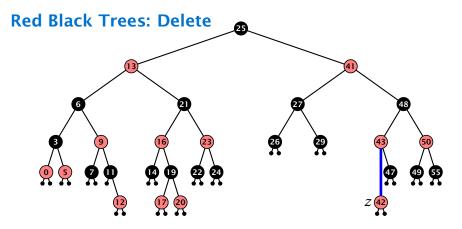
If it was black there may be the following problems.


- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

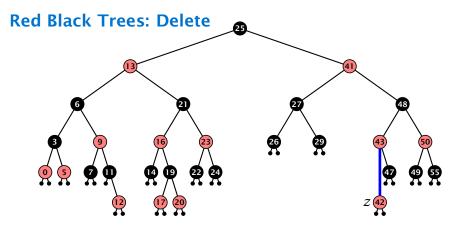



- do normal delete
- when replacing content by content of successor, don't change color of node

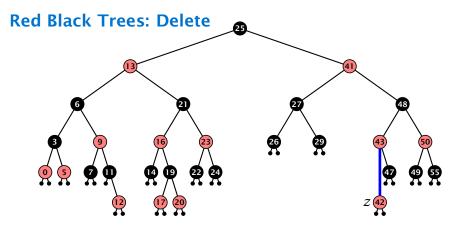

- do normal delete
- when replacing content by content of successor, don't change color of node


- do normal delete
- when replacing content by content of successor, don't change color of node

- do normal delete
- when replacing content by content of successor, don't change color of node



- do normal delete
- when replacing content by content of successor, don't change color of node


Delete:

deleting black node messes up black-height property

Delete:

- deleting black node messes up black-height property
- ▶ if *z* is red, we can simply color it black and everything is fine

Delete:

- deleting black node messes up black-height property
- ▶ if *z* is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Red Black Trees: Delete

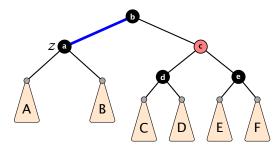
Invariant of the fix-up algorithm

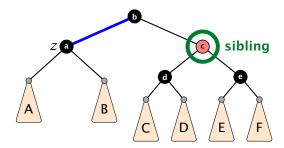
the node z is black

Red Black Trees: Delete

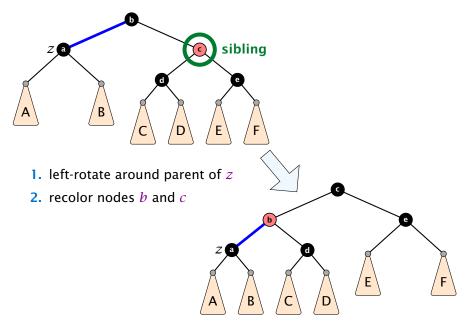
Invariant of the fix-up algorithm

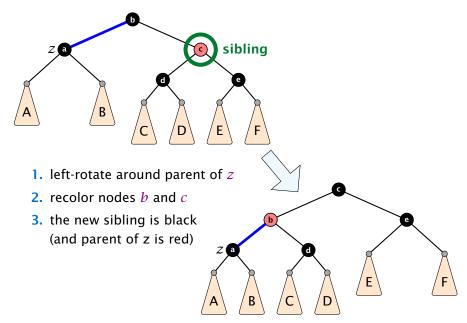
- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

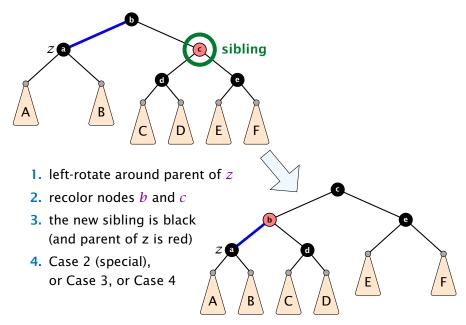

Red Black Trees: Delete

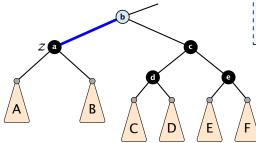

Invariant of the fix-up algorithm

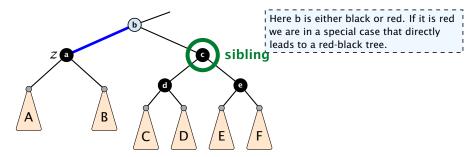
- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

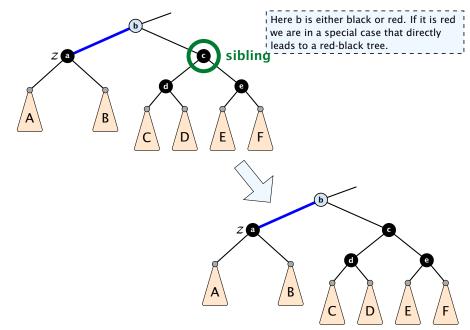

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

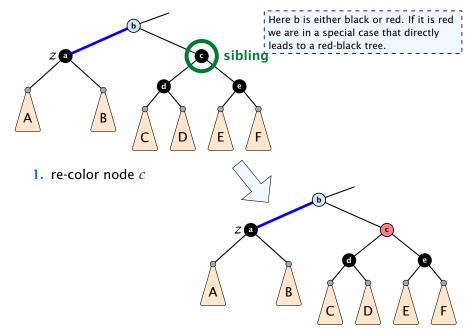


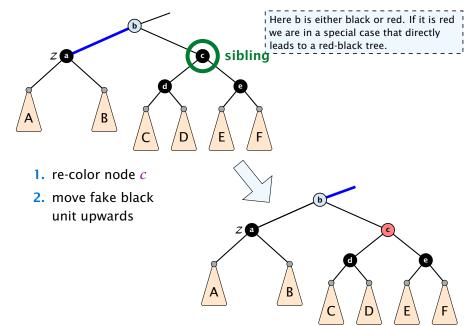


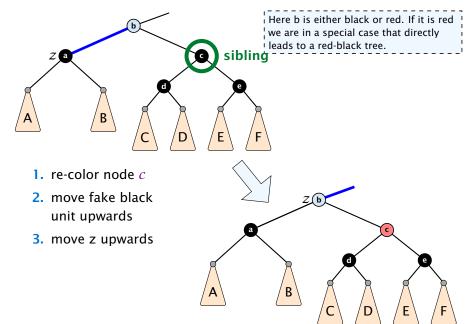


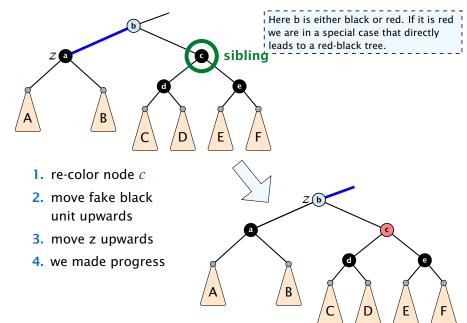


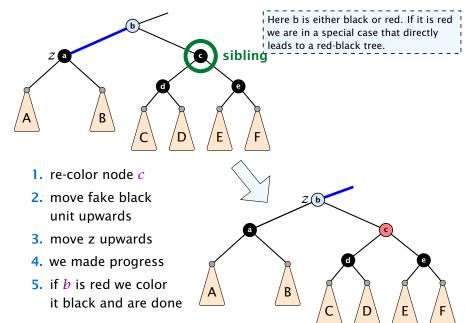


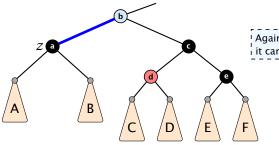


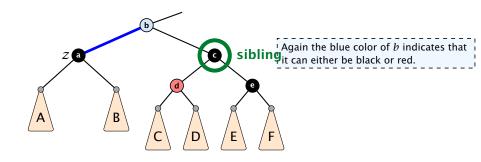


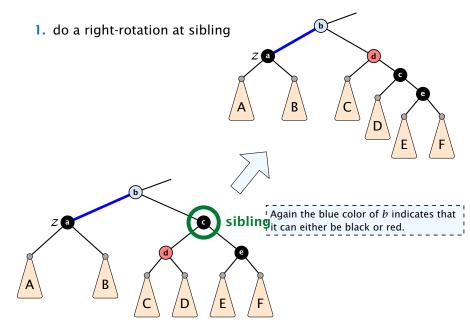

Here b is either black or red. If it is red we are in a special case that directly leads to a red-black tree.

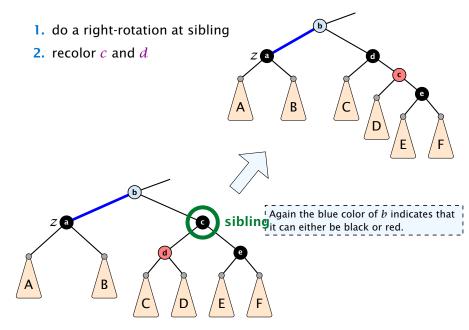




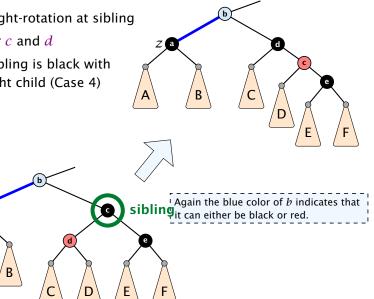


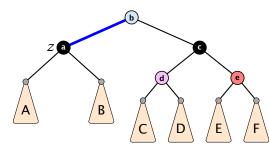




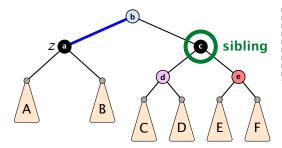


Again the blue color of *b* indicates that it can either be black or red.

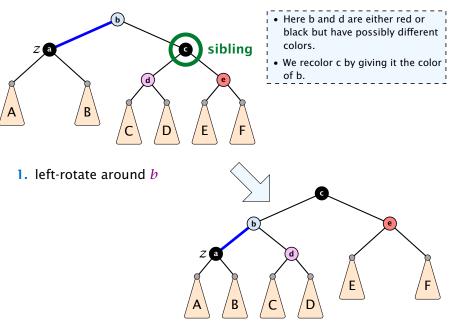


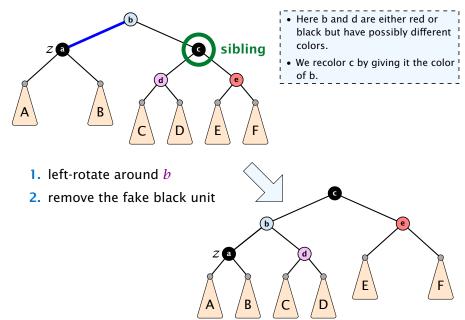


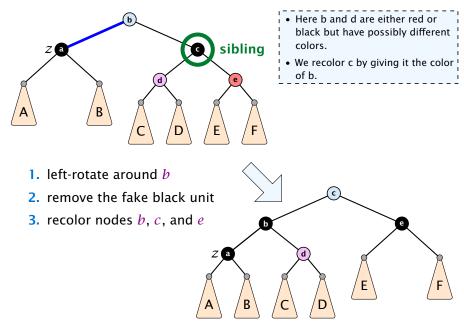
2. recolor c and d

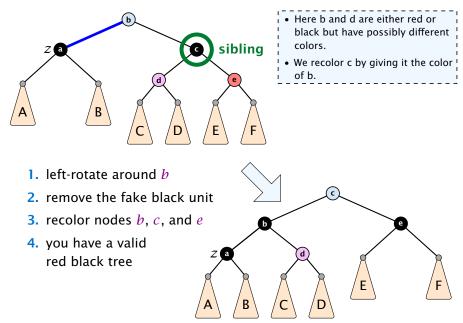

A

3. new sibling is black with red right child (Case 4)




- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.




•	Here b and d are either red or
1	black but have possibly different
1	colors.

• We recolor c by giving it the color of b.

only Case 2 can repeat; but only h many steps, where h is the height of the tree

only Case 2 can repeat; but only h many steps, where h is the height of the tree

Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree

- only Case 2 can repeat; but only *h* many steps, where *h* is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case 4 → red black tree

Performing Case 2 at most $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.

Disadvantage of balanced search trees:

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs

7.3 Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

after access, an element is moved to the root; splay(x)
 repeated accesses are faster

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

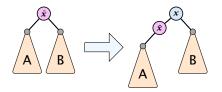
- after access, an element is moved to the root; splay(x)
 repeated accesses are faster
- only amortized guarantee

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

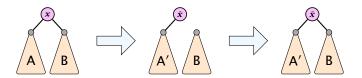
- after access, an element is moved to the root; splay(x)
 repeated accesses are faster
- only amortized guarantee
- read-operations change the tree


find(x)

- search for x according to a search tree
- let \bar{x} be last element on search-path
- splay(\bar{x})

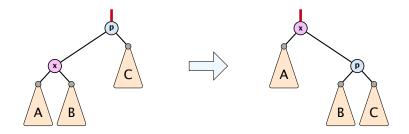
insert(x)

- search for x; x̄ is last visited element during search (successer or predecessor of x)
- splay(\bar{x}) moves \bar{x} to the root
- insert x as new root



7.3 Splay Trees

2. Dec. 2024 166/330


delete(x)

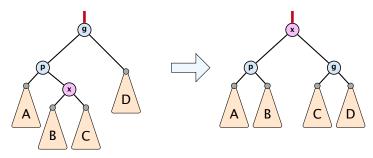
- search for x; splay(x); remove x
- search largest element \bar{x} in A
- splay(\bar{x}) (on subtree A)
- connect root of *B* as right child of \bar{x}

Move to Root

How to bring element to root?

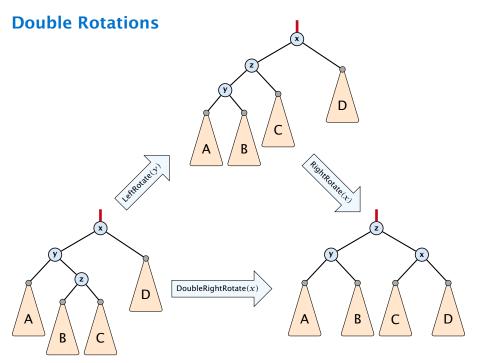
- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- ▶ if *x* is left child do right rotation otw. left rotation

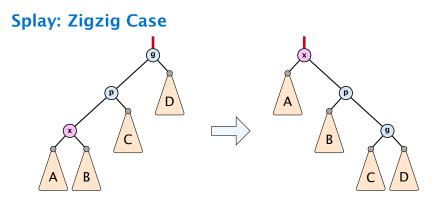
Splay: Zig Case



better option splay(x):

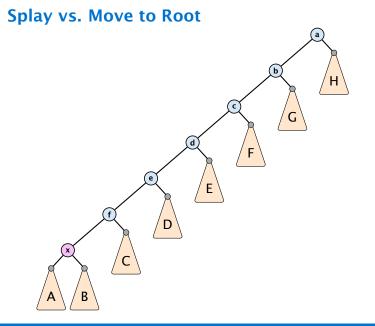
zig case: if x is child of root do left rotation or right rotation around parent

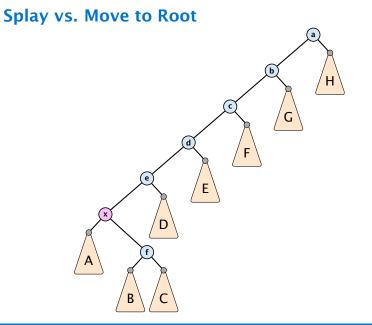

Splay: Zigzag Case



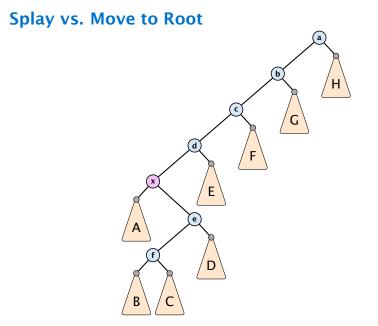
better option splay(x):

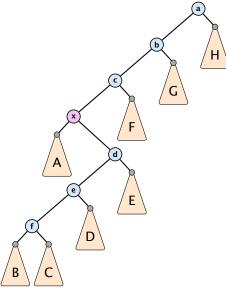
- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left rotation)

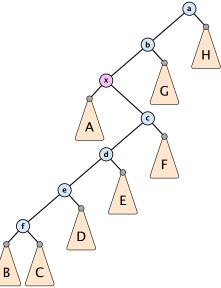


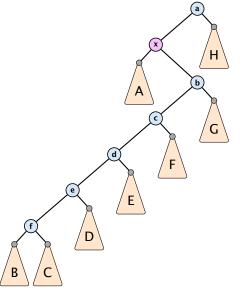

better option splay(x):

- zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)
- do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

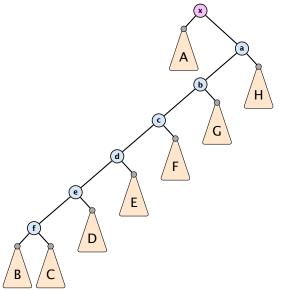




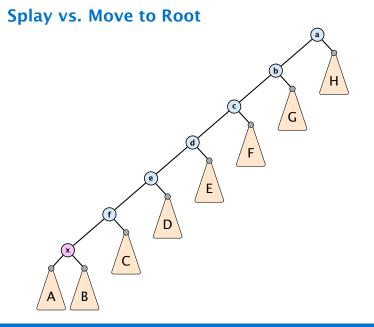




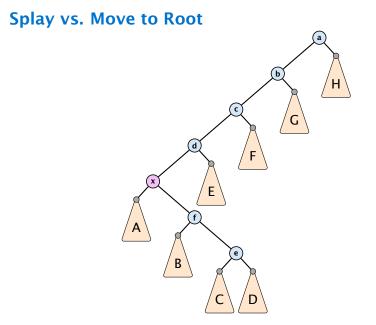
7.3 Splay Trees

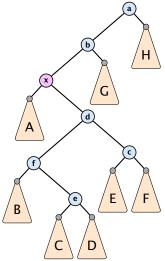


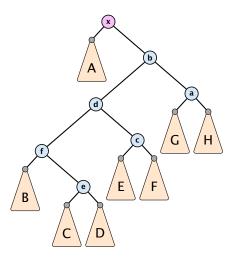
7.3 Splay Trees



7.3 Splay Trees




7.3 Splay Trees



7.3 Splay Trees

7.3 Splay Trees

Static Optimality

Suppose we have a sequence of m find-operations. find(x) appears h_x times in this sequence.

The cost of a **static** search tree *T* is:

$$cost(T) = m + \sum_{x} h_x \operatorname{depth}_T(x)$$

The total cost for processing the sequence on a splay-tree is $O(cost(T_{min}))$, where T_{min} is an optimal static search tree.

Dynamic Optimality

Let S be a sequence with m find-operations.

Let *A* be a data-structure based on a search tree:

- the cost for accessing element x is 1 + depth(x);
- after accessing x the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from *S* has cost O(cost(A, S)), for processing *S*.

Lemma 16

Splay Trees have an amortized running time of $O(\log n)$ for all operations.

Amortized Analysis

Definition 17

A data structure with operations $op_1(), \ldots, op_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_i denote the number of occurences of $op_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n)$.

Introduce a potential for the data structure.

7.3 Splay Trees

Introduce a potential for the data structure.

• $\Phi(D_i)$ is the potential after the *i*-th operation.

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:ci}$

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{\kappa} c_i$$

1.

7.3 Splay Trees

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^k c_i \leq \sum_{i=1}^k c_i + \Phi(D_k) - \Phi(D_0)$$

7.3 Splay Trees

2. Dec. 2024 179/330

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the *i*-th operation is

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:ci}$

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

7.3 Splay Trees

2. Dec. 2024 179/330

Stack

- ► S. push()
- ► S. pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Stack

- ► S. push()
- ► S. pop()
- S. multipop(k): removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- ► *S*. push(): cost 1.
- ► S. pop(): cost 1.
- ► *S*. multipop(*k*): cost min{size, *k*} = *k*.

Use potential function $\Phi(S)$ = number of elements on the stack.

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S.push(): cost

 $\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$.

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

S. pop(): cost

$$\hat{C}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 \le 0$$
 .

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

S. push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

S. pop(): cost

$$\hat{C}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 \le 0$$
 .

S. multipop(k): cost

 $\hat{C}_{\rm mp} = C_{\rm mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

• Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
 .

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
.

• Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0$$
 .

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2$$
.

• Changing bit from 1 to 0:

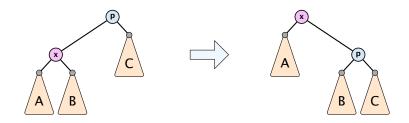
$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0$$
.

Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \le 2$.

Splay Trees

potential function for splay trees:


- size $\mathbf{s}(\mathbf{x}) = |T_{\mathbf{x}}|$
- rank $r(x) = \log_2(s(x))$
- $\blacktriangleright \Phi(T) = \sum_{v \in T} r(v)$

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

 $\Delta \Phi =$

7.3 Splay Trees

$$\Delta \Phi = r'(x) + r'(p) - r(x) - r(p)$$

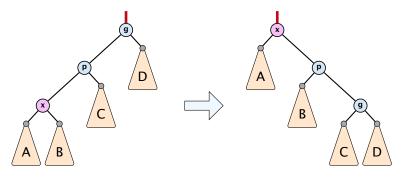
7.3 Splay Trees

$$\Delta \Phi = \mathbf{r}'(\mathbf{x}) + \mathbf{r}'(p) - \mathbf{r}(\mathbf{x}) - \mathbf{r}(p)$$
$$= \mathbf{r}'(p) - \mathbf{r}(\mathbf{x})$$

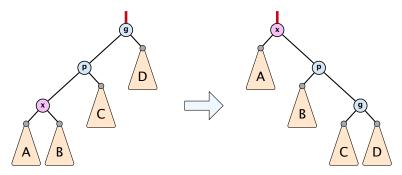
7.3 Splay Trees

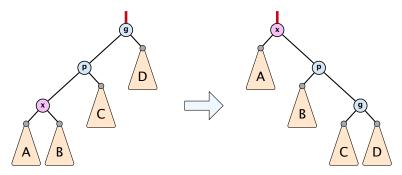
$$\Delta \Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$
$$\leq r'(x) - r(x)$$

7.3 Splay Trees

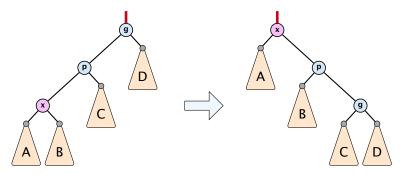


$$\Delta \Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$
$$\leq r'(x) - r(x)$$

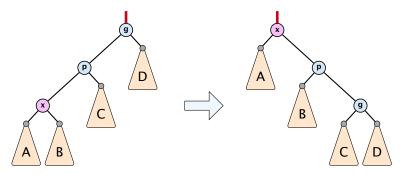

 $\operatorname{cost}_{\operatorname{zig}} \le 1 + 3(r'(x) - r(x))$


7.3 Splay Trees

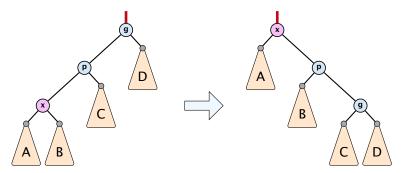
$$\Delta \Phi =$$

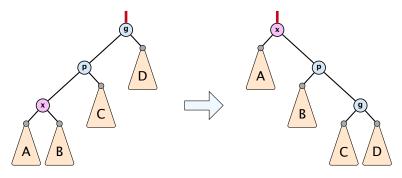

 $\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$

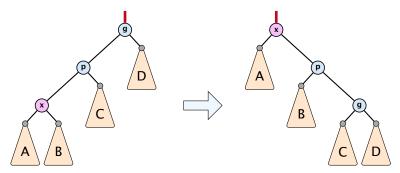
 $\Delta \Phi = \mathbf{r}'(\mathbf{x}) + \mathbf{r}'(p) + \mathbf{r}'(g) - \mathbf{r}(\mathbf{x}) - \mathbf{r}(p) - \mathbf{r}(g)$ = $\mathbf{r}'(p) + \mathbf{r}'(g) - \mathbf{r}(\mathbf{x}) - \mathbf{r}(p)$

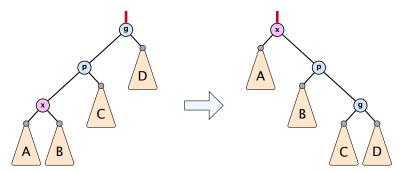

$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

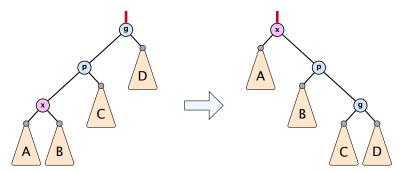
= $r'(p) + r'(g) - r(x) - r(p)$
 $\leq r'(x) + r'(g) - r(x) - r(x)$

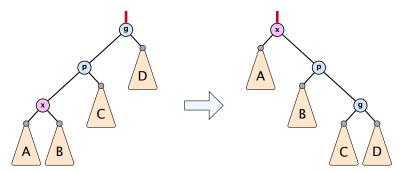

$$\begin{aligned} \Delta \Phi &= r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \\ &= r'(p) + r'(g) - r(x) - r(p) \\ &\leq r'(x) + r'(g) - r(x) - r(x) \\ &= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x) \end{aligned}$$


$$\begin{split} \Delta \Phi &= r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \\ &= r'(p) + r'(g) - r(x) - r(p) \\ &\leq r'(x) + r'(g) - r(x) - r(x) \\ &= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x) \\ &= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x)) \end{split}$$

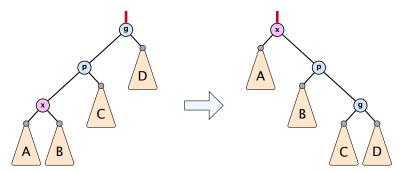

$$\begin{split} \Delta \Phi &= r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \\ &= r'(p) + r'(g) - r(x) - r(p) \\ &\leq r'(x) + r'(g) - r(x) - r(x) \\ &= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x) \\ &= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x)) \\ &\leq -2 + 3(r'(x) - r(x)) \end{split}$$


$$\begin{aligned} \Delta \Phi &= r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \\ &= r'(p) + r'(g) - r(x) - r(p) \\ &\leq r'(x) + r'(g) - r(x) - r(x) \\ &= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x) \\ &= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x)) \\ &\leq -2 + 3(r'(x) - r(x)) \quad \Rightarrow \operatorname{cost_{zigzig}} \leq 3(r'(x) - r(x)) \end{aligned}$$

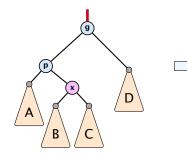

$$\frac{1}{2}(r(x)+r'(g)-2r'(x))$$

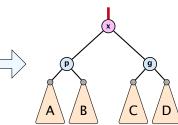

$$\frac{1}{2} (r(x) + r'(g) - 2r'(x))$$

= $\frac{1}{2} (\log(s(x)) + \log(s'(g)) - 2\log(s'(x)))$


$$\frac{1}{2} \left(r(x) + r'(g) - 2r'(x) \right)$$

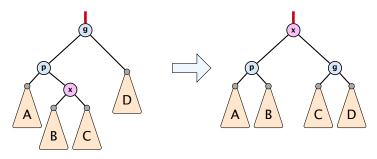
= $\frac{1}{2} \left(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \right)$
= $\frac{1}{2} \log\left(\frac{s(x)}{s'(x)}\right) + \frac{1}{2} \log\left(\frac{s'(g)}{s'(x)}\right)$

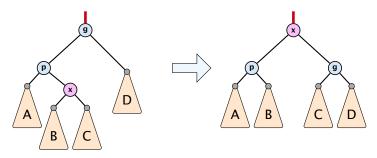

$$\begin{aligned} \frac{1}{2} \Big(r(x) + r'(g) - 2r'(x) \Big) \\ &= \frac{1}{2} \Big(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \Big) \\ &= \frac{1}{2} \log\Big(\frac{s(x)}{s'(x)}\Big) + \frac{1}{2} \log\Big(\frac{s'(g)}{s'(x)}\Big) \\ &\le \log\Big(\frac{1}{2} \frac{s(x)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)}\Big) \end{aligned}$$



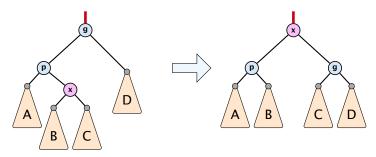
$$\begin{aligned} \frac{1}{2} \Big(r(x) + r'(g) - 2r'(x) \Big) \\ &= \frac{1}{2} \Big(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \Big) \\ &= \frac{1}{2} \log\Big(\frac{s(x)}{s'(x)}\Big) + \frac{1}{2} \log\Big(\frac{s'(g)}{s'(x)}\Big) \\ &\le \log\Big(\frac{1}{2} \frac{s(x)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)}\Big) \le \log\Big(\frac{1}{2}\Big) \end{aligned}$$

$$\begin{aligned} \frac{1}{2} \Big(r(x) + r'(g) - 2r'(x) \Big) \\ &= \frac{1}{2} \Big(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \Big) \\ &= \frac{1}{2} \log\Big(\frac{s(x)}{s'(x)}\Big) + \frac{1}{2} \log\Big(\frac{s'(g)}{s'(x)}\Big) \\ &\le \log\Big(\frac{1}{2} \frac{s(x)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)}\Big) \le \log\Big(\frac{1}{2}\Big) = -1 \end{aligned}$$



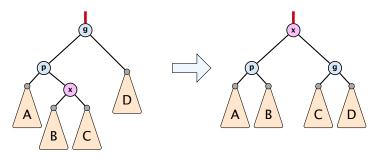

7.3 Splay Trees

 $\Delta\Phi=r'(x)+r'(p)+r'(g)-r(x)-r(p)-r(g)$


7.3 Splay Trees

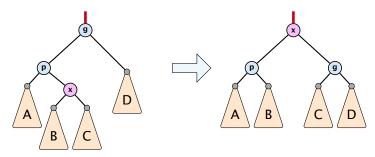
$$\Delta \Phi = \mathbf{r}'(\mathbf{x}) + \mathbf{r}'(p) + \mathbf{r}'(g) - \mathbf{r}(\mathbf{x}) - \mathbf{r}(p) - \mathbf{r}(g)$$

= $\mathbf{r}'(p) + \mathbf{r}'(g) - \mathbf{r}(\mathbf{x}) - \mathbf{r}(p)$


7.3 Splay Trees

$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

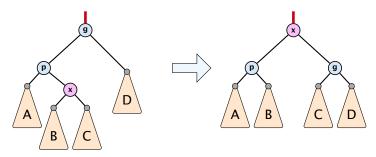
= r'(p) + r'(g) - r(x) - r(p)
 $\leq r'(p) + r'(g) - r(x) - r(x)$


7.3 Splay Trees

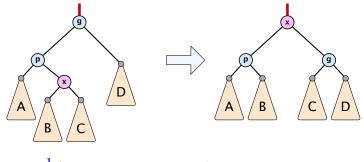
$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

= r'(p) + r'(g) - r(x) - r(p)
$$\leq r'(p) + r'(g) - r(x) - r(x)$$

= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x)

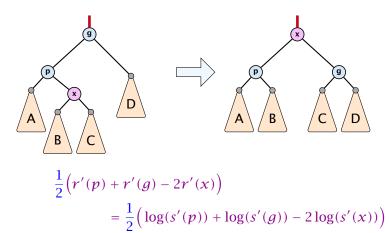


7.3 Splay Trees

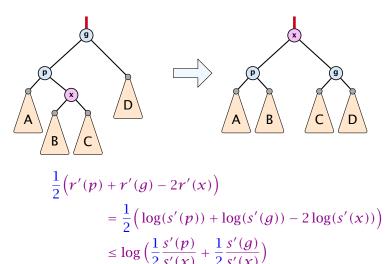

$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

= $r'(p) + r'(g) - r(x) - r(p)$
 $\leq r'(p) + r'(g) - r(x) - r(x)$
= $r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x)$
 $\leq -2 + 2(r'(x) - r(x))$

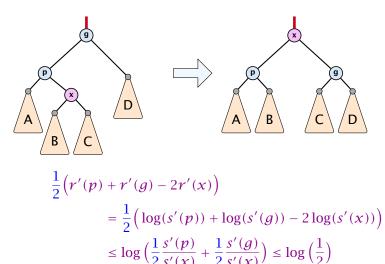
$$\begin{aligned} \Delta \Phi &= r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \\ &= r'(p) + r'(g) - r(x) - r(p) \\ &\leq r'(p) + r'(g) - r(x) - r(x) \\ &= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x) \\ &\leq -2 + 2(r'(x) - r(x)) \quad \Rightarrow \operatorname{cost_{zigzag}} \leq 3(r'(x) - r(x)) \end{aligned}$$



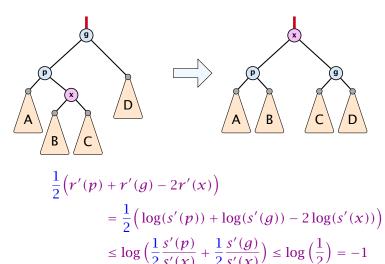
$$\frac{1}{2} \Big(r'(p) + r'(g) - 2r'(x) \Big)$$



7.3 Splay Trees



7.3 Splay Trees



7.3 Splay Trees

7.3 Splay Trees

Amortized cost of the whole splay operation:

$$\leq 1 + 1 + \sum_{\text{steps } t} 3(r_t(x) - r_{t-1}(x))$$
$$= 2 + 3(r(\text{root}) - r_0(x))$$
$$\leq \mathcal{O}(\log n)$$

Suppose you want to develop a data structure with:

- Insert(x): insert element x.
- Search(*k*): search for element with key *k*.
- Delete(x): delete element referenced by pointer x.
- ▶ find-by-rank(ℓ): return the ℓ -th element; return "error" if the data-structure contains less than ℓ elements.

Suppose you want to develop a data structure with:

- Insert(x): insert element x.
- Search(*k*): search for element with key *k*.
- Delete(x): delete element referenced by pointer x.
- ▶ find-by-rank(ℓ): return the ℓ -th element; return "error" if the data-structure contains less than ℓ elements.

Augment an existing data-structure instead of developing a new one.

How to augment a data-structure

1. choose an underlying data-structure

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

How to augment a data-structure

- 1. choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

How to augment a data-structure

- choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- 3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
 - Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
 - However, the above outline is a good way to describe/document a new data-structure.

How to augment a data-structure

- 1. choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- 3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- 4. develop the new operations

• Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).

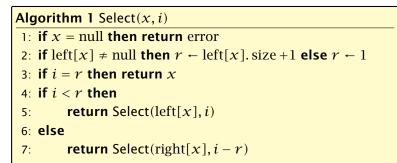
• However, the above outline is a good way to describe/document a new data-structure.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

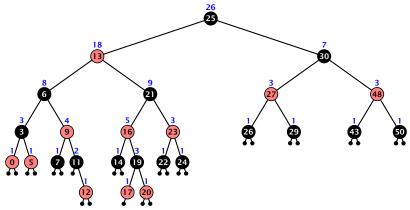
1. We choose a red-black tree as the underlying data-structure.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

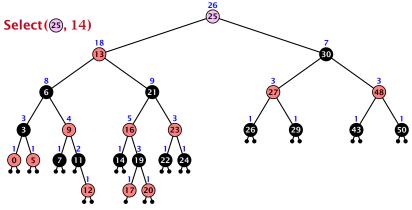
- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.


Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

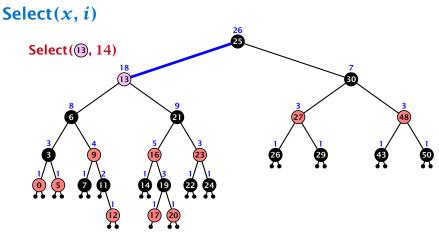
- 1. We choose a red-black tree as the underlying data-structure.
- **2.** We store in each node v the size of the sub-tree rooted at v.
- 3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...


Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

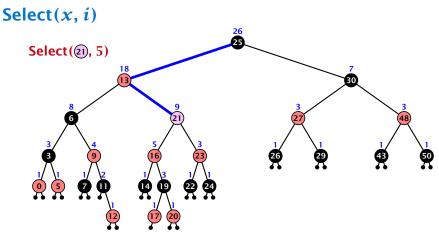
```
4. How does find-by-rank work?Find-by-rank(k) = Select(root,k) with
```

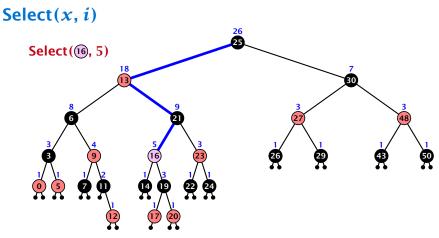


Select(x, i)

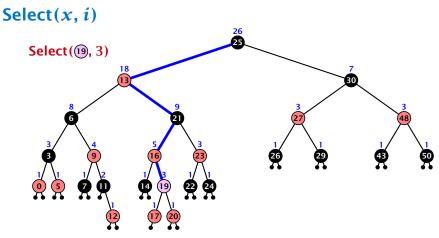
- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

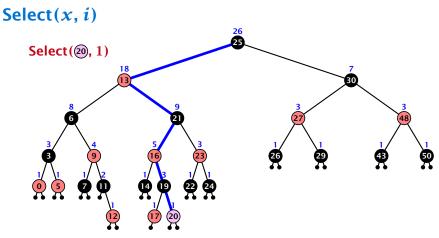


Select(*x*, *i*)


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

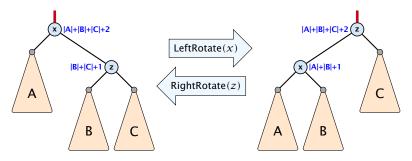
Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.


Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete(x): Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:

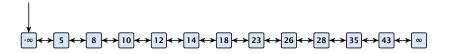
The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields of the children.

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

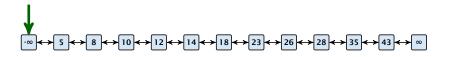
7.5 Skip Lists


Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)

Why do we not use a list for implementing the ADT Dynamic Set?

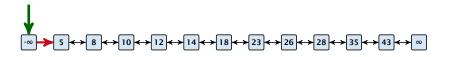
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

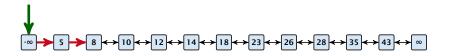
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

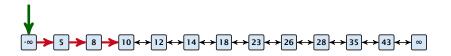
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

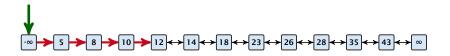
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

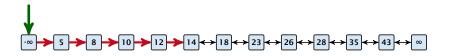
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

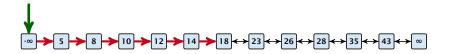
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

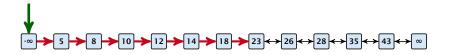
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

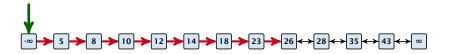
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

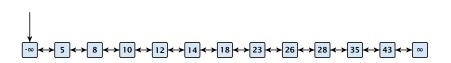
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)



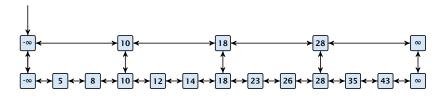
7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

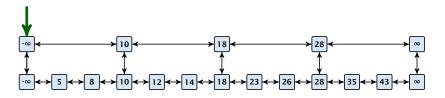
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- ► time for delete Θ(1) if we are given a handle to the object, otw. Θ(n)

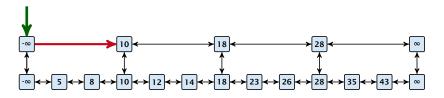


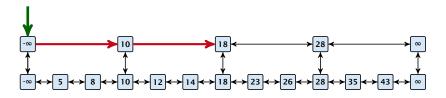
7.5 Skip Lists

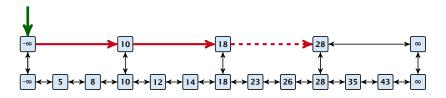

How can we improve the search-operation?

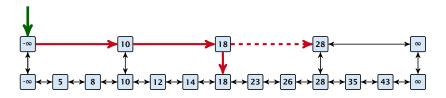
How can we improve the search-operation?

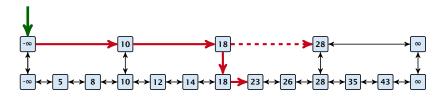

How can we improve the search-operation?

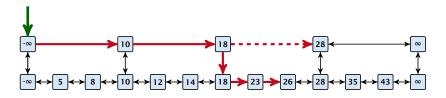

How can we improve the search-operation?


How can we improve the search-operation?

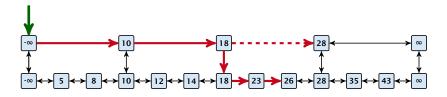

How can we improve the search-operation?


How can we improve the search-operation?


How can we improve the search-operation?

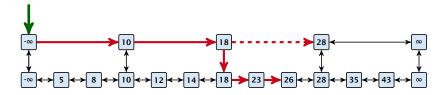

How can we improve the search-operation?

How can we improve the search-operation?



How can we improve the search-operation?

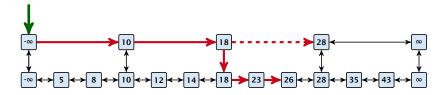
How can we improve the search-operation?


Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

How can we improve the search-operation?

Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) (k + 1 lists L_0, \ldots, L_k)

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) (k + 1 lists L_0, \ldots, L_k)

Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lfloor \frac{|L_{k-1}|}{|L_k|+1} \right\rfloor + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- ▶ Find the largest item in list L_{k-1} that is smaller than x. At most [|L_{k-1}| | + 2 steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left[\frac{|L_{k-2}|}{|L_{k-1}|+1}\right] + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- ▶ Find the largest item in list L_{k-1} that is smaller than x. At most [|L_{k-1}| | + 2 steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left[\frac{|L_{k-2}|}{|L_{k-1}|+1}\right] + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lfloor \frac{|L_{k-1}|}{|L_{k}|+1} \right\rfloor + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left[\frac{|L_{k-2}|}{|L_{k-1}|+1}\right] + 2$ steps.

• At most
$$|L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1)$$
 steps.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

 $r^{-k}n + kr$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}} .$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}} .$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.

How to do insert and delete?

7.5 Skip Lists

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

Insert:

7.5 Skip Lists

Insert:

A search operation gives you the insert position for element x in every list.

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.

Insert:

- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.
- lnsert x into lists L_0, \ldots, L_{t-1} .

Insert:

- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.
- lnsert x into lists L_0, \ldots, L_{t-1} .

Delete:

Insert:

- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.
- lnsert x into lists L_0, \ldots, L_{t-1} .

Delete:

> You get all predecessors via backward pointers.

Insert:

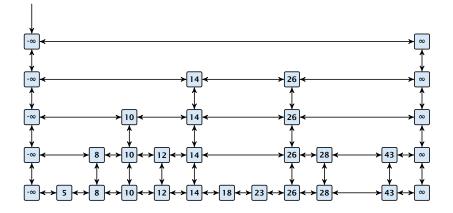
- A search operation gives you the insert position for element x in every list.
- ► Flip a coin until it shows head, and record the number t ∈ {1,2,...} of trials needed.
- lnsert x into lists L_0, \ldots, L_{t-1} .

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

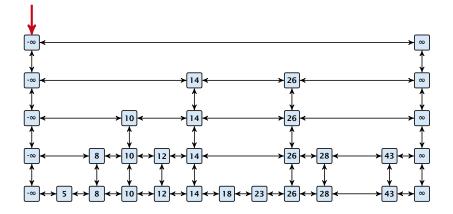
Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- lnsert x into lists L_0, \ldots, L_{t-1} .

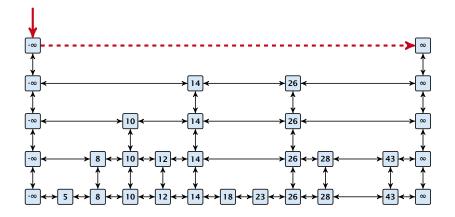

Delete:

- > You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

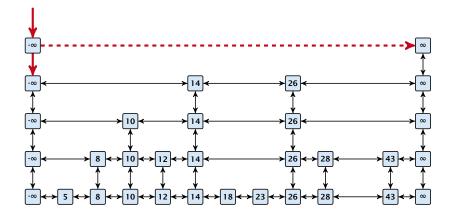
The time for both operations is dominated by the search time.


Insert (35):

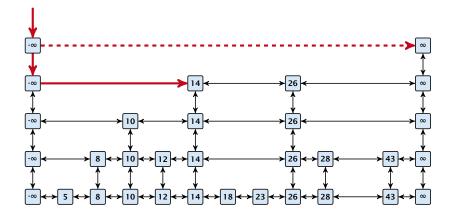
7.5 Skip Lists


Insert (35):

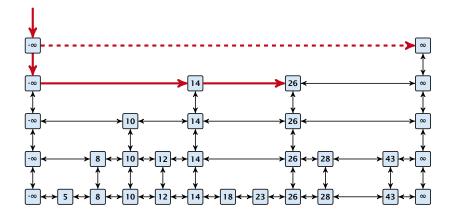
7.5 Skip Lists


Insert (35):

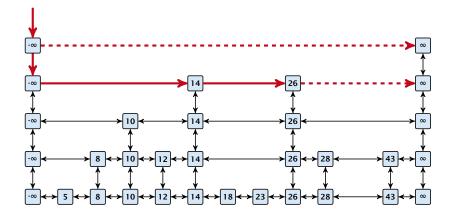
7.5 Skip Lists


Insert (35):

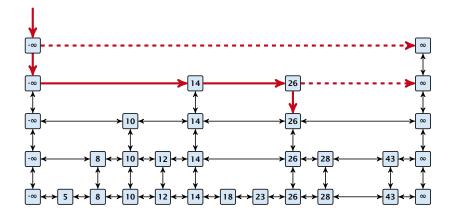
7.5 Skip Lists


Insert (35):

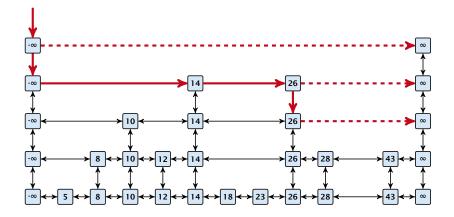
7.5 Skip Lists


Insert (35):

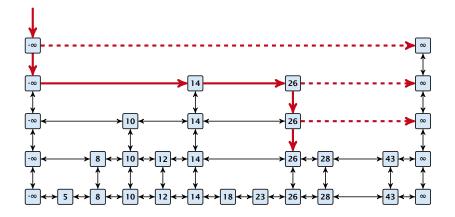
7.5 Skip Lists


Insert (35):

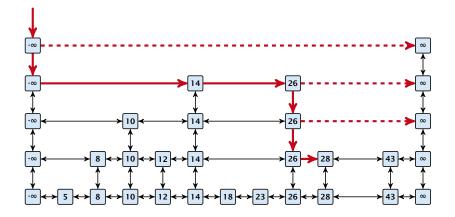
7.5 Skip Lists


Insert (35):

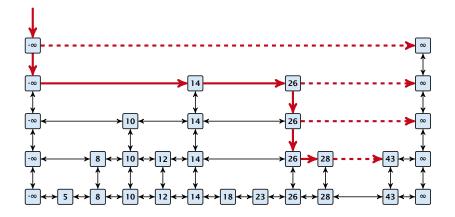
7.5 Skip Lists


Insert (35):

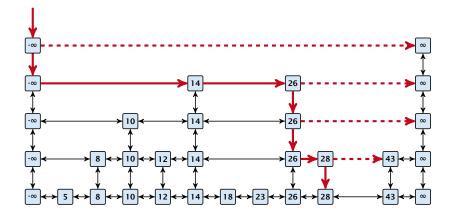
7.5 Skip Lists


Insert (35):

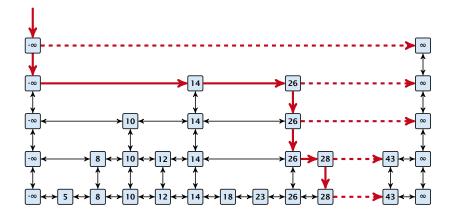
7.5 Skip Lists


Insert (35):

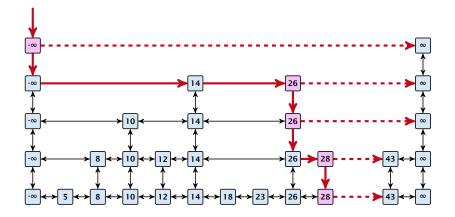
7.5 Skip Lists


Insert (35):

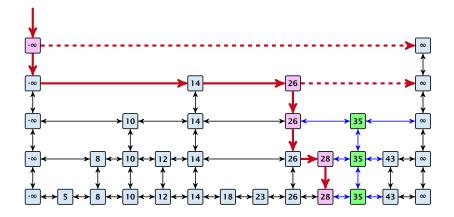
7.5 Skip Lists


Insert (35):

7.5 Skip Lists


Insert (35):

7.5 Skip Lists


Insert (35):

7.5 Skip Lists

Insert (35):

7.5 Skip Lists

Definition 18 (High Probability)

We say a **randomized** algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $O(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Definition 18 (High Probability)

We say a **randomized** algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $O(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Here the O-notation hides a constant that may depend on α .

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

 $\Pr[E_1 \wedge \cdots \wedge E_\ell]$

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

 $\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \dots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \dots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c-\alpha} .$$

7.5 Skip Lists

High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the *i*-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \dots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \dots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c-\alpha} .$$

This means $E_1 \wedge \cdots \wedge E_\ell$ holds with high probability.

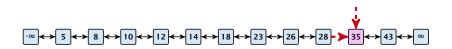
Lemma 19

A search (and, hence, also insert and delete) in a skip list with n elements takes time O(logn) with high probability (w. h. p.).

7.5 Skip Lists

Backward analysis:

7.5 Skip Lists


Backward analysis:

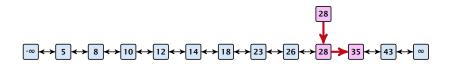
7.5 Skip Lists

Backward analysis:

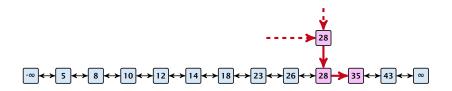
7.5 Skip Lists

Backward analysis:

7.5 Skip Lists


Backward analysis:

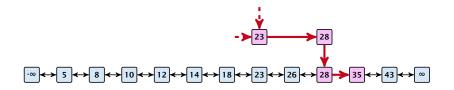
7.5 Skip Lists


Backward analysis:

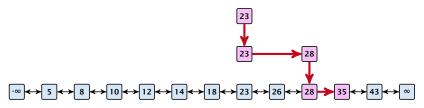
7.5 Skip Lists

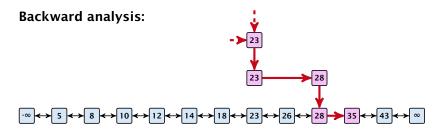

Backward analysis:

7.5 Skip Lists

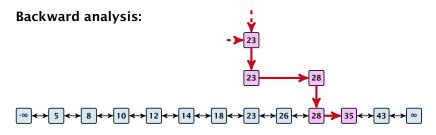

Backward analysis:

7.5 Skip Lists

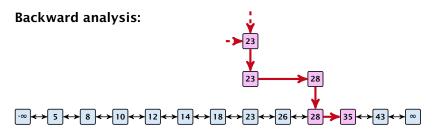

Backward analysis:


7.5 Skip Lists

Backward analysis:

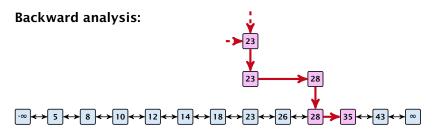


7.5 Skip Lists


7.5 Skip Lists

At each point the path goes up with probability $1\!/\!2$ and left with probability $1\!/\!2$.

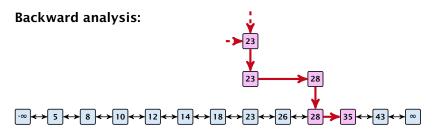
7.5 Skip Lists



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

A "long" search path must also go very high.



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\left(\frac{n}{k}\right)^{k} \le {\binom{n}{k}} \le \left(\frac{en}{k}\right)^{k}$$
$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^{k}$$
$$\binom{n}{k}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$
$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$
$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^{k}$$
$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} = \frac{n^{k} \cdot k^{k}}{k!}$$

$$\binom{k}{k} = \frac{k!}{k!} \leq \frac{k!}{k!} = \frac{k!}{k! \cdot k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$
$$= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$
$$(n)^k \quad k^k \quad (n)^k \quad \sum k^i$$

$$= \left(\frac{n}{k}\right)^{\kappa} \cdot \frac{k^{\kappa}}{k!} \le \left(\frac{n}{k}\right)^{\kappa} \cdot \sum_{i \ge 0} \frac{k^{i}}{i!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$

$$= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!} \le \left(\frac{n}{k}\right)^k \cdot \sum_{i \ge 0} \frac{k^i}{i!} = \left(\frac{en}{k}\right)^k$$

7.5 Skip Lists

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

7.5 Skip Lists

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

$\Pr[E_{z,k}]$

7.5 Skip Lists

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

7.5 Skip Lists

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)}$$

7.5 Skip Lists

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)}$$

7.5 Skip Lists

2. Dec. 2024 209/330

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

7.5 Skip Lists

2. Dec. 2024 209/330

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha}$$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma\alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^k \cdot n^{-\alpha}$$

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{lpha}}\right)^k n^{-lpha}$$

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

 $\Pr[E_{z,k}] \le \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^{\beta}k}\right)^{k} \cdot n^{-\alpha}$$
$$\leq \left(\frac{2e(\beta + \alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

for $\alpha \geq 1$.

2. Dec. 2024 209/330

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold.

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

Pr[search requires z steps]

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

 $\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

 $\begin{aligned} &\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}] \\ &\leq n^{-\alpha} + n^{-(\gamma-1)} \end{aligned}$

So far we fixed $k = \gamma \log n$, $\gamma \ge 1$, and $z = 7\alpha \gamma \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

 $\Pr[\text{search requires } z \text{ steps}] \le \Pr[E_{z,k}] + \Pr[A_{k+1}]$ $\le n^{-\alpha} + n^{-(\gamma-1)}$

This means, the search requires at most *z* steps, w. h. p.

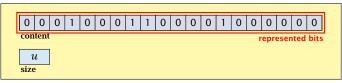
7.6 van Emde Boas Trees

Dynamic Set Data Structure *S*:

- \blacktriangleright S.insert(x)
- ► S.delete(x)
- \blacktriangleright S.search(x)
- ► *S*.min()
- ► *S*.max()
- \blacktriangleright S. succ(x)
- \blacktriangleright S.pred(x)

7.6 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:


- S. insert(x): Inserts x into S.
- S. delete(x): Deletes x from S. Usually assumes that $x \in S$.
- S. member(x): Returns 1 if $x \in S$ and 0 otw.
- **S. min():** Returns the value of the minimum element in *S*.
- **S. max():** Returns the value of the maximum element in *S*.
- S. succ(x): Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- S. pred(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from $\{0, 1, \ldots, u-1\}$, where u denotes the size of the universe.

one array of u bits

Use an array that encodes the indicator function of the dynamic set.

7.6 van Emde Boas Trees

2. Dec. 2024 214/330

Algorithm 1 array.insert(x)

1: content[x] \leftarrow 1;

Algorithm 2 array.delete(*x*)

1: content[x] \leftarrow 0;

Algorithm 3 array.member(*x*)

1: **return** content[*x*];

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.

Algorithm 4 array.max()

- 1: for $(i = \text{size} 1; i \ge 0; i--)$ do 2: if content[i] = 1 then return i;
- 3: return null;

Algorithm 4 array.max()

- 1: for $(i = \text{size} 1; i \ge 0; i -)$ do 2: if content[i] = 1 then return i;
- 3: return null:

Algorithm 5 array.min()

- 1: **for** (i = 0; i < size; i + +) **do**
- 2: **if** content[i] = 1 **then return** *i*;
- 3: return null;

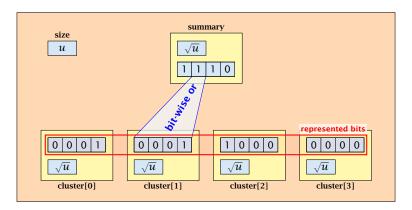
Algorithm 4 array.max()

- 1: for $(i = \text{size} 1; i \ge 0; i -)$ do 2: if content[i] = 1 then return i;
- 3: return null;

Algorithm 5 array.min()

- for (*i* = 0; *i* < size; *i*++) do
 if content[*i*] = 1 then return *i*;
- 3: return null:

Running time is $\mathcal{O}(u)$ in the worst case.


Algorithm 6 array.succ(*x*)

- for (i = x + 1; i < size; i++) do
 if content[i] = 1 then return i;
 return null;

Algorithm 7 array.pred(x)

- 1: **for** $(i = x 1; i \ge 0; i -)$ **do** 2: **if** content[i] = 1 **then return** *i*;
- 3: return null:
- Running time is $\mathcal{O}(u)$ in the worst case.

- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The *i*-th bit in the summary array stores the bit-wise or of the bits in the *i*-th cluster.

7.6 van Emde Boas Trees

2. Dec. 2024 218/330

7.6 van Emde Boas Trees

2. Dec. 2024 219/330

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

Algorithm 8 member(*x*)

1: **return** cluster[high(*x*)].member(low(*x*));

Algorithm 8 member(*x*)

1: **return** cluster[high(*x*)]. member(low(*x*));

Algorithm 9 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

Algorithm 8 member(*x*)

1: **return** cluster[high(*x*)].member(low(*x*));

Algorithm 9 insert(x)

1: cluster[high(x)].insert(low(x));

2: summary.insert(high(x));

The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 10 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary.delete(high(x));

Algorithm 10 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary.delete(high(x));
- The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u} . Hence, $\mathcal{O}(\sqrt{u})$.

Algorithm 11 max()

- maxcluster ← summary.max();
 if maxcluster = null return null;
 offs ← cluster[maxcluster].max()
 return maxcluster ∘ offs;

Algorithm 11 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: offs ← cluster[maxcluster].max()
 4: return maxcluster ∘ offs;

Algorithm 12 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: offs \leftarrow cluster[mincluster].min();
- 4: **return** *mincluster offs*;

Running time is roughly $2\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Algorithm 13 succ(x)

- 1: $m \leftarrow \text{cluster}[\text{high}(x)]. \operatorname{succ}(\operatorname{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *succluster* \leftarrow summary.succ(high(x));
- 4: **if** *succeluster* ≠ null **then**
- 5: *offs* ← cluster[*succeluster*].min();
- 6: **return** *succeluster offs*;
- 7: return null;

Algorithm 13 succ(x)

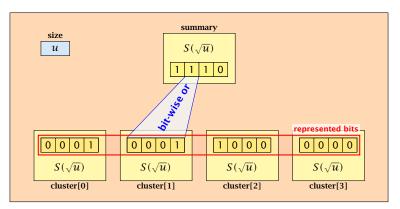
- 1: $m \leftarrow \text{cluster}[\text{high}(x)]. \operatorname{succ}(\operatorname{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *succluster* \leftarrow summary.succ(high(x));
- 4: **if** *succeluster* ≠ null **then**
- 5: $offs \leftarrow cluster[succeluster].min();$
- 6: **return** *succeluster offs*;

7: return null;

• Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Algorithm 14 pred(x)

- 1: $m \leftarrow cluster[high(x)].pred(low(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *predcluster* \leftarrow summary.pred(high(x));
- 4: **if** *predcluster* ≠ null **then**
- 5: $offs \leftarrow cluster[predcluster].max();$
- 6: **return** *predcluster offs*;


7: return null;

• Running time is roughly $3\sqrt{u} = O(\sqrt{u})$ in the worst case.

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

2. Dec. 2024 225/330

We assume that $u = 2^{2^k}$ for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the recursion).

7.6 van Emde Boas Trees

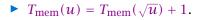
2. Dec. 2024 227/330

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.


Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1].min() from within the data-structure S(4) is not a recursive call as it will call the function array.min().

This means that the non-recursive case is been dealt with while initializing the data-structure.

Algorithm 15 member(*x*)

1: **return** cluster[high(*x*)].member(low(*x*));

7.6 van Emde Boas Trees

2. Dec. 2024 228/330

Algorithm 16 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

•
$$T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1.$$

Algorithm 17 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary.delete(high(x));

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$$

Algorithm 18 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: *offs* ← cluster[*mincluster*].min();
- 4: **return** *mincluster offs*;

•
$$T_{\min}(u) = 2T_{\min}(\sqrt{u}) + 1.$$

Algorithm 19 succ(x)

- 1: $m \leftarrow \text{cluster}[\text{high}(x)]. \operatorname{succ}(\operatorname{low}(x))$
- 2: if $m \neq$ null then return high $(x) \circ m$;
- 3: *succluster* \leftarrow summary.succ(high(*x*));
- 4: **if** *succeluster* ≠ null **then**
- 5: *offs* ← cluster[*succluster*].min();
- 6: **return** *succeluster offs*;

7: return null;

$$T_{\text{succ}}(u) = 2T_{\text{succ}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$$

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$:

7.6 van Emde Boas Trees

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$.

7.6 van Emde Boas Trees

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

7.6 van Emde Boas Trees

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell)$

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell) = T_{\rm mem}(2^\ell)$

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u)$

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

 $X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1$$

7.6 van Emde Boas Trees

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 .$$

 $T_{\rm mem}(u) = T_{\rm mem}(\sqrt{u}) + 1:$

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
$$= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 .$$

Using Master theorem gives $X(\ell) = O(\log \ell)$, and hence $T_{\text{mem}}(u) = O(\log \log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$.

 $T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

7.6 van Emde Boas Trees

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then $X(\ell)$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

 $X(\ell) = T_{\rm ins}(2^{\ell})$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

 $X(\ell) = T_{\rm ins}(2^{\ell}) = T_{\rm ins}(u)$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

 $X(\ell) = T_{ins}(2^{\ell}) = T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$\begin{aligned} X(\ell) &= T_{\rm ins}(2^{\ell}) = T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1 \\ &= 2T_{\rm ins}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1 \ . \end{aligned}$$

7.6 van Emde Boas Trees

2. Dec. 2024 234/330

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\text{ins}}(u) = \mathcal{O}(\log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{ins}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\text{ins}}(u) = \mathcal{O}(\log u)$.

The same holds for $T_{\max}(u)$ and $T_{\min}(u)$.

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

2. Dec. 2024 235/330

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$.

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

7.6 van Emde Boas Trees

2. Dec. 2024 235/330

 $T_{del}(u) = 2T_{del}(\sqrt{u}) + T_{min}(\sqrt{u}) + 1 \le 2T_{del}(\sqrt{u}) + c \log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell)$

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

 $X(\ell) = T_{\text{del}}(2^{\ell})$

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + c \log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

 $X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u)$

 $T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + c\log(u).$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

 $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u$

 $T_{del}(u) = 2T_{del}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{del}(\sqrt{u}) + c \log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u$ $= 2T_{del}(2^{\frac{\ell}{2}}) + c\ell$

 $T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + c \log(u).$ Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then $X(\ell) = T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c1$

$$\begin{aligned} (\ell) &= T_{del}(2^{\ell}) = T_{del}(u) = 2T_{del}(\sqrt{u}) + c \log u \\ &= 2T_{del}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell \end{aligned}$$

.

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

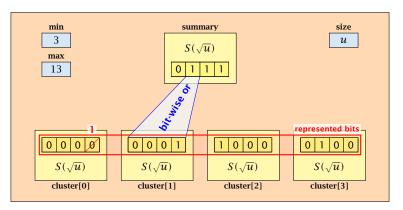
Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then

$$\begin{aligned} X(\ell) &= T_{\rm del}(2^{\ell}) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + c \log u \\ &= 2T_{\rm del}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell \end{aligned}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{del}(u) = O(\log u \log \log u)$.

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$

Set $\ell := \log u$ and $X(\ell) := T_{del}(2^{\ell})$. Then


$$\begin{aligned} X(\ell) &= T_{\rm del}(2^{\ell}) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + c \log u \\ &= 2T_{\rm del}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell \end{aligned}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{del}(u) = O(\log u \log \log u)$.

The same holds for $T_{\text{pred}}(u)$ and $T_{\text{succ}}(u)$.

2. Dec. 2024 235/330

- The bit referenced by min is not set within sub-datastructures.
- The bit referenced by max is set within sub-datastructures (if max ≠ min).

Advantages of having max/min pointers:

Recursive calls for min and max are constant time.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min = \max = x$.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min = \max = x$.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Algorithm 20 max()

1: return max;

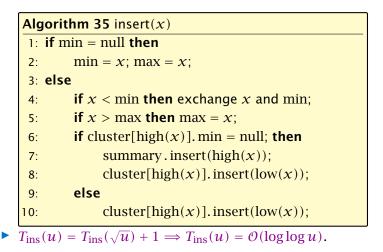
Algorithm 21 min()

1: return min;

Constant time.

Algorithm 22 member(*x*)

- 1: **if** $x = \min$ **then return** 1; // TRUE
- 2: return cluster[high(x)].member(low(x));

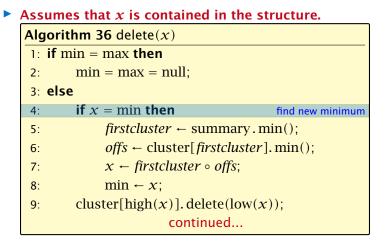

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \Longrightarrow T(u) = \mathcal{O}(\log \log u).$$

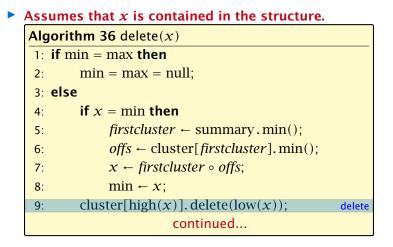

```
Algorithm 23 succ(x)
 1: if min \neq null \land x < min then return min:
 2: maxincluster \leftarrow cluster[high(x)].max();
 3: if maxincluster \neq null \land low(x) < maxincluster then
         offs \leftarrow cluster[high(x)]. succ(low(x));
4:
         return high(x) \circ offs;
 5:
6: else
         succluster \leftarrow summary.succ(high(x));
7:
8:
         if succluster = null then return null:
9:
         offs \leftarrow cluster[succluster].min();
         return succeluster • offs;
10:
```

 $T_{\text{succ}}(u) = T_{\text{succ}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{succ}}(u) = \mathcal{O}(\log \log u).$

Note that the recusive call in Line 8 takes constant time as the if-condition in Line 6 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 7 and in Line 10. These are mutually exclusive, i.e., only one of these calls will actually occur.


From this we get that $T_{ins}(u) = T_{ins}(\sqrt{u}) + 1$.


Assumes that x is contained in the structure.

```
Algorithm 36 delete(x)
1: if min = max then
       \min = \max = \operatorname{null};
 2:
 3: else
4:
        if x = \min then
             firstcluster ← summary.min():
 5:
6:
             offs \leftarrow cluster[firstcluster].min();
        x \leftarrow firstcluster \circ offs;
 7:
 8:
         min \leftarrow x;
         cluster[high(x)]. delete(low(x));
 9:
                          continued...
```


Algorithm 36 delete(x)	
	continued
10:	if cluster[high(x)].min() = null then
11:	summary.delete(high(x));
12:	if $x = \max$ then
13:	$summax \leftarrow summary.max();$
14:	if <i>summax</i> = null then max ← min;
15:	else
16:	offs \leftarrow cluster[summax].max();
17:	$\max \leftarrow summax \circ offs$
18:	else
19:	if $x = \max$ then
20:	offs \leftarrow cluster[high(x)].max();
21:	$\max \leftarrow \operatorname{high}(x) \circ offs;$

Algorithm 36 delete(x)		
	continued fix maximum	
10:	if cluster[high(x)].min() = null then	
11:	summary.delete(high(x));	
12:	if $x = \max$ then	
13:	$summax \leftarrow summary.max();$	
14:	if <i>summax</i> = null then max ← min;	
15:	else	
16:	offs \leftarrow cluster[summax].max();	
17:	$\max \leftarrow summax \circ offs$	
18:	else	
19:	if $x = \max$ then	
20:	offs \leftarrow cluster[high(x)].max();	
21:	$\max \leftarrow \operatorname{high}(x) \circ offs;$	

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high(x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

 $T_{\text{del}}(u) = T_{\text{del}}(\sqrt{u}) + c$.

This gives $T_{del}(u) = O(\log \log u)$.

2. Dec. 2024 245/330

7.6 van Emde Boas Trees

Space requirements:

The space requirement fulfills the recurrence

$$S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \mathcal{O}(\sqrt{u}) .$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is S(u) = O(u). Exercise.

Let the "real" recurrence relation be

$$S(k^2) = (k+1)S(k) + c_1 \cdot k; S(4) = c_2$$

• Replacing S(k) by $R(k) := S(k)/c_2$ gives the recurrence

 $R(k^2) = (k+1)R(k) + ck; R(4) = 1$

where $c = c_1/c_2 < 1$.

Now, we show $R(k^2) \le k^2 - 2$ for $k^2 \ge 4$.

- Obviously, this holds for $k^2 = 4$.
- For *k*² > 4 we have

$$\begin{split} R(k^2) &= (1+k)R(k) + ck \\ &\leq (1+k)(k-2) + k \leq k^2 - 2 \end{split}$$

This shows that R(k) and, hence, S(k) grows linearly.

Dictionary:

- S. insert(x): Insert an element x.
- ► *S*. delete(*x*): Delete the element pointed to by *x*.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

Dictionary:

- S. insert(x): Insert an element x.
- ► *S*. delete(*x*): Delete the element pointed to by *x*.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Dictionary:

- S. insert(x): Insert an element x.
- ► *S*. delete(*x*): Delete the element pointed to by *x*.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Dictionary:

- S. insert(x): Insert an element x.
- ► *S*. delete(*x*): Delete the element pointed to by *x*.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.

Definitions:

• Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.

Definitions:

- Universe U of keys, e.g., $U \subseteq \aleph_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.

Definitions:

- Universe U of keys, e.g., $U \subseteq \aleph_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow [0, ..., n-1]$.

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array T[0, ..., n-1] hash-table.
- Hash function $h: U \rightarrow [0, ..., n-1]$.

The hash-function *h* should fulfill:

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array T[0, ..., n-1] hash-table.
- Hash function $h: U \rightarrow [0, \dots, n-1]$.

The hash-function *h* should fulfill:

Fast to evaluate.

Definitions:

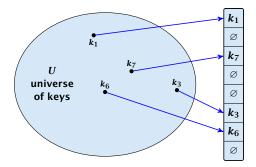
- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow [0, \dots, n-1]$.

The hash-function *h* should fulfill:

- Fast to evaluate.
- Small storage requirement.

Definitions:

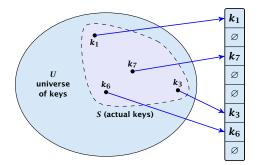
- Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow [0, ..., n-1]$.


The hash-function *h* should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

Direct Addressing

Ideally the hash function maps all keys to different memory locations.



This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Such a hash function *h* is called a perfect hash function for set *S*.

7.7 Hashing

2. Dec. 2024 251/330

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

7.7 Hashing

2. Dec. 2024 252/330

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set *S* that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

Typically, collisions do not appear once the size of the set *S* of actual keys gets close to *n*, but already when $|S| \ge \omega(\sqrt{n})$.

Typically, collisions do not appear once the size of the set *S* of actual keys gets close to *n*, but already when $|S| \ge \omega(\sqrt{n})$.

Lemma 20

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}$$
.

Typically, collisions do not appear once the size of the set *S* of actual keys gets close to *n*, but already when $|S| \ge \omega(\sqrt{n})$.

Lemma 20

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}$$
.

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow [0, ..., n-1]$.

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

 $\Pr[A_{m,n}]$

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n}$$

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$
$$\leq \prod_{j=0}^{m-1} e^{-j/n}$$

Proof.

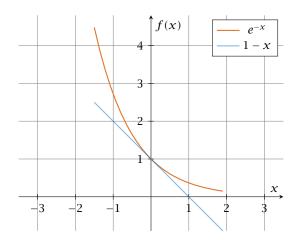
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$
$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}}$$

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$
$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}} .$$


Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$
$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}$$

Here the first equality follows since the ℓ -th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

The inequality $1 - x \le e^{-x}$ is derived by stopping the Taylor-expansion of e^{-x} after the second term.

7.7 Hashing

2. Dec. 2024 255/330

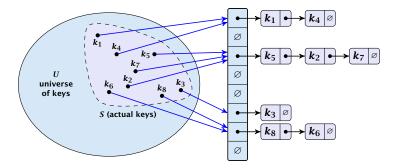
Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

Resolving Collisions

The methods for dealing with collisions can be classified into the two main types


- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.

Arrange elements that map to the same position in a linear list.

- Access: compute h(x) and search list for key[x].
- Insert: insert at the front of the list.

7.7 Hashing

2. Dec. 2024 257/330

Let A denote a strategy for resolving collisions. We use the following notation:

Let A denote a strategy for resolving collisions. We use the following notation:

A⁺ denotes the average time for a successful search when using A;

Let A denote a strategy for resolving collisions. We use the following notation:

- A⁺ denotes the average time for a successful search when using A;
- A⁻ denotes the average time for an unsuccessful search when using A;

Let A denote a strategy for resolving collisions. We use the following notation:

- A⁺ denotes the average time for a successful search when using A;
- A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

Let A denote a strategy for resolving collisions. We use the following notation:

- A⁺ denotes the average time for a successful search when using A;
- A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

The time required for an unsuccessful search is 1 plus the length of the list that is examined.

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$.

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

 $A^- = 1 + \alpha \ .$

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$\mathbf{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

keys before k_i

$$\mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

The expected successful search cost is

$$\mathbf{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$
cost for key k_i

7.7 Hashing

$$\mathbf{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$
$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$
$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$
$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$
$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$
$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$
$$= 1+\frac{m-1}{2n}$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$
$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$
$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$
$$= 1+\frac{m-1}{2n} = 1+\frac{\alpha}{2}-\frac{\alpha}{2m}$$

7.7 Hashing

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$= 1+\frac{m-1}{2n} = 1+\frac{\alpha}{2}-\frac{\alpha}{2m} .$$

Hence, the expected cost for a successful search is $A^+ \leq 1 + \frac{\alpha}{2}$.

Disadvantages:

- pointers increase memory requirements
- pointers may lead to bad cache efficiency

Advantages:

- no à priori limit on the number of elements
- deletion can be implemented efficiently
- by using balanced trees instead of linked list one can also obtain worst-case guarantees.

7.7 Hashing

All objects are stored in the table itself.

7.7 Hashing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the *j*-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the *j*-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

Search(*k*): Try position h(k, 0); if it is empty your search fails; otw. continue with h(k, 1), h(k, 2),

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the *j*-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

Search(*k*): Try position h(k, 0); if it is empty your search fails; otw. continue with h(k, 1), h(k, 2),

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches h(k, n - 1), and this slot is non-empty then your table is full.

Choices for h(k, j):

Linear probing:
 h(k, i) = h(k) + i mod n
 (sometimes: h(k, i) = h(k) + ci mod n).

Choices for h(k, j):

- Linear probing:
 h(k,i) = h(k) + i mod n
 (sometimes: h(k,i) = h(k) + ci mod n).
- Quadratic probing: $h(k,i) = h(k) + c_1i + c_2i^2 \mod n.$

Choices for h(k, j):

- Linear probing:
 h(k,i) = h(k) + i mod n
 (sometimes: h(k,i) = h(k) + ci mod n).
- Quadratic probing: $h(k,i) = h(k) + c_1i + c_2i^2 \mod n.$
- Double hashing: $h(k, i) = h_1(k) + ih_2(k) \mod n.$

Choices for h(k, j):

- Linear probing:
 h(k,i) = h(k) + i mod n
 (sometimes: h(k,i) = h(k) + ci mod n).
- Quadratic probing: $h(k,i) = h(k) + c_1i + c_2i^2 \mod n.$

• Double hashing: $h(k, i) = h_1(k) + ih_2(k) \mod n.$

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).

Linear Probing

Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 21

Let *L* be the method of linear probing for resolving collisions:

$$L^{+} \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$
$$L^{-} \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^{2}} \right)$$

7.7 Hashing

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 22

Let Q be the method of quadratic probing for resolving collisions:

$$Q^+ \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}$$

 $Q^- \approx \frac{1}{1-\alpha} + \ln\left(\frac{1}{1-\alpha}\right) - \alpha$

7.7 Hashing

Double Hashing

Any probe into the hash-table usually creates a cache-miss.

Double Hashing

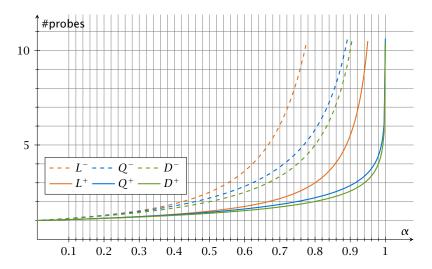
Any probe into the hash-table usually creates a cache-miss.

Lemma 23

Let D be the method of double hashing for resolving collisions:

$$D^+ \approx \frac{1}{\alpha} \ln\left(\frac{1}{1-\alpha}\right)$$

 $D^- \approx \frac{1}{1-\alpha}$


Open Addressing

Some values:

α	Linear Probing		Quadratic Probing		Double Hashing	
	L^+	L^{-}	Q^+	Q^-	D^+	D^-
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20

Open Addressing

7.7 Hashing

2. Dec. 2024 269/330

We analyze the time for a search in a very idealized Open Addressing scheme.

► The probe sequence h(k, 0), h(k, 1), h(k, 2),... is equally likely to be any permutation of (0, 1,..., n − 1).

7.7 Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

 $\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

 $\Pr[A_1 \cap A_2 \cap \dots \cap A_{i-1}]$ = $\Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot \Pr[A_{i-1} \mid A_1 \cap \dots \cap A_{i-2}]$

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

 $\Pr[A_1 \cap A_2 \cap \dots \cap A_{i-1}]$ = $\Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot \Pr[A_{i-1} \mid A_1 \cap \dots \cap A_{i-2}]$

 $\Pr[X \ge i]$

7.7 Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

 $\Pr[A_1 \cap A_2 \cap \dots \cap A_{i-1}]$ = $\Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot \Pr[A_{i-1} \mid A_1 \cap \dots \cap A_{i-2}]$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2}$$

7.7 Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

 $\Pr[A_1 \cap A_2 \cap \dots \cap A_{i-1}]$ = $\Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot \Pr[A_{i-1} \mid A_1 \cap \dots \cap A_{i-2}]$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$
$$\le \left(\frac{m}{n}\right)^{i-1}$$

7.7 Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_i denote the event that the *i*-th probe occurs and is to a non-empty slot.

 $\Pr[A_1 \cap A_2 \cap \dots \cap A_{i-1}]$ = $\Pr[A_1] \cdot \Pr[A_2 \mid A_1] \cdot \Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot \Pr[A_{i-1} \mid A_1 \cap \dots \cap A_{i-2}]$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$
$$\leq \left(\frac{m}{n}\right)^{i-1} = \alpha^{i-1} \ .$$

7.7 Hashing

 $\mathbb{E}[X]$

7.7 Hashing

$$\mathsf{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i]$$

7.7 Hashing

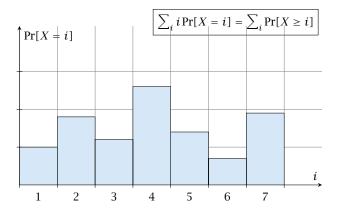
$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1}$$

7.7 Hashing

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i}$$

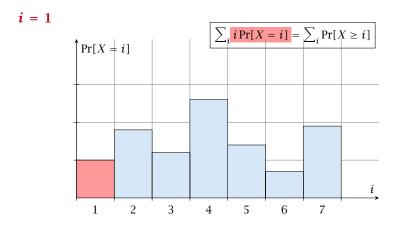
7.7 Hashing

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1 - \alpha} .$$

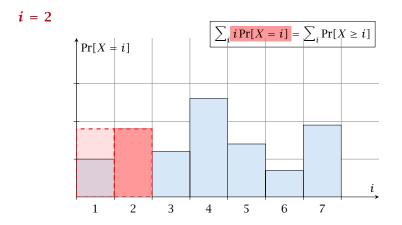

7.7 Hashing

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1 - \alpha} .$$

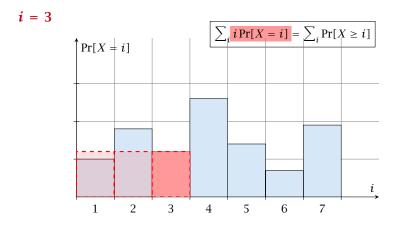
$$\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \alpha^3 + \dots$$



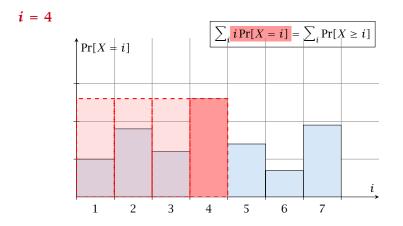
7.7 Hashing



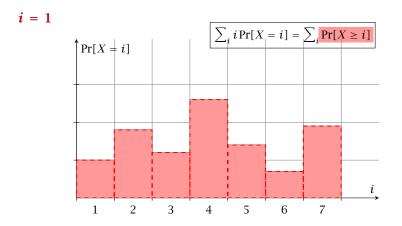
7.7 Hashing



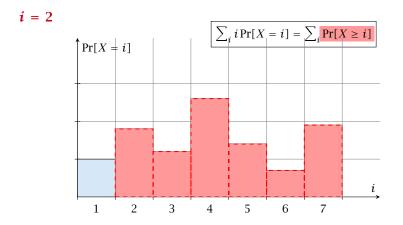
7.7 Hashing



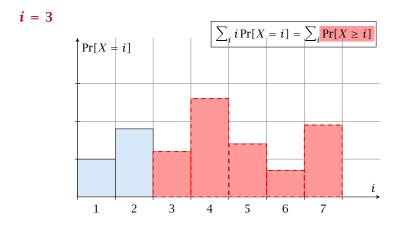
7.7 Hashing



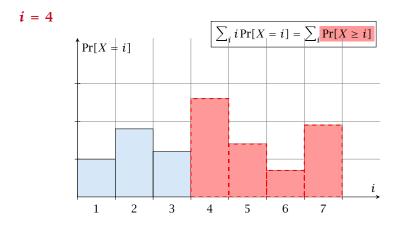
7.7 Hashing



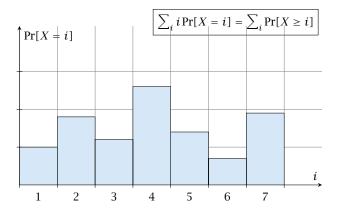
7.7 Hashing



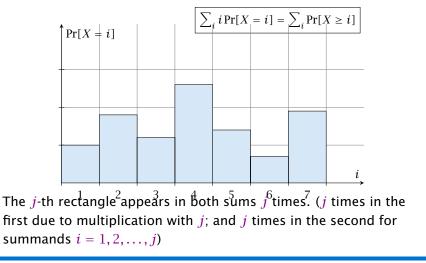
7.7 Hashing



7.7 Hashing



7.7 Hashing



7.7 Hashing

7.7 Hashing

7.7 Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let *k* be the *i* + 1-st element. The expected time for a search for *k* is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let *k* be the *i* + 1-st element. The expected time for a search for *k* is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m}\sum_{i=0}^{m-1}\frac{n}{n-i}$$

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m}\sum_{i=0}^{m-1}\frac{n}{n-i} = \frac{n}{m}\sum_{i=0}^{m-1}\frac{1}{n-i}$$

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let *k* be the *i* + 1-st element. The expected time for a search for *k* is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m}\sum_{i=0}^{m-1}\frac{n}{n-i} = \frac{n}{m}\sum_{i=0}^{m-1}\frac{1}{n-i} = \frac{1}{\alpha}\sum_{k=n-m+1}^{n}\frac{1}{k}$$

7.7 Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$
$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx$$

7.7 Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.

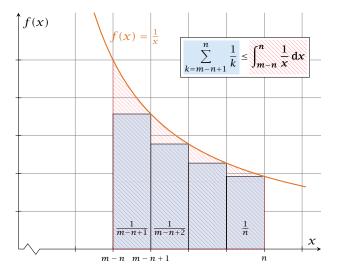
$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$
$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m}$$

7.7 Hashing

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n} = \frac{n}{n-i}$.


$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$
$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha} .$$

7.7 Hashing

2. Dec. 2024 274/330

Analysis of Idealized Open Address Hashing

7.7 Hashing

2. Dec. 2024 275/330

How do we delete in a hash-table?

For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.

7.7 Hashing

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.

7.7 Hashing

2. Dec. 2024 277/330

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.

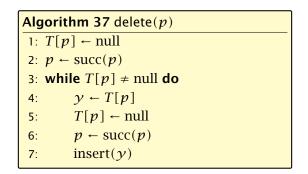
- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.

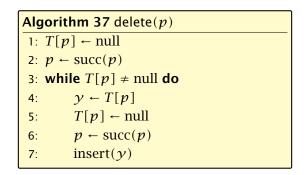
7.7 Hashing

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.



 For Linear Probing one can delete elements without using deletion-markers.


- For Linear Probing one can delete elements without using deletion-markers.
- Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.

 \ensuremath{p} is the index into the table-cell that contains the object to be deleted.

 \ensuremath{p} is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

7.7 Hashing

2. Dec. 2024 280/330

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

7.7 Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow [0, ..., n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow [0, ..., n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set \mathcal{H} of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H} .

Definition 24

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_1, u_2 \in U$ with $u_1 \neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n}$$
,

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Definition 24

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_1, u_2 \in U$ with $u_1 \neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n}$$
,

where the probability is w.r.t. the choice of a random hash-function from set $\mathcal{H}.$

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.

Definition 25

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\} \Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all u₁, u₂ ∈ U with u₁ ≠ u₂, and for any two hash-positions t₁, t₂:

$$\Pr[h(u_1) = t_1 \wedge h(u_2) = t_2] \le \frac{1}{n^2} .$$

7.7 Hashing

2. Dec. 2024 282/330

Definition 25

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\} \Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all u₁, u₂ ∈ U with u₁ ≠ u₂, and for any two hash-positions t₁, t₂:

$$\Pr[h(u_1) = t_1 \wedge h(u_2) = t_2] \le \frac{1}{n^2} .$$

This requirement clearly implies a universal hash-function.

7.7 Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called *k*-independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \frac{1}{n^\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Definition 27

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called (μ, k) -independent if for any choice of $\ell \leq k$ distinct keys $u_1, \ldots, u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1, \ldots, t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \frac{\mu}{n^\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

7.7 Hashing

2. Dec. 2024 285/330

Let $U := \{0, ..., p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p-1\}$, and let $\mathbb{Z}_p^* := \{1, ..., p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

7.7 Hashing

Let $U := \{0, ..., p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p-1\}$, and let $\mathbb{Z}_p^* := \{1, ..., p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Define

 $h_{a,b}(x) := (ax + b \mod p) \mod n$

7.7 Hashing

Let $U := \{0, ..., p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p-1\}$, and let $\mathbb{Z}_p^* := \{1, ..., p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Define

 $h_{a,b}(x) := (ax + b \mod p) \mod n$

Lemma 28

The class

$$\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$$

is a universal class of hash-functions from U to $\{0, ..., n-1\}$.

7.7 Hashing

2. Dec. 2024 286/330

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $\blacktriangleright ax + b \not\equiv ay + b \pmod{p}$

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $\blacktriangleright ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $\bullet ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

 $a(x-y) \not\equiv 0 \pmod{p}$

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $\bullet ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

 $a(x-y) \not\equiv 0 \pmod{p}$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).

The hash-function does not generate collisions before the (mod *n*)-operation. Furthermore, every choice (*a*, *b*) is mapped to a different pair (*t_x*, *t_y*) with *t_x* := *ax* + *b* and *t_y* := *ay* + *b*.

The hash-function does not generate collisions before the (mod n)-operation. Furthermore, every choice (a, b) is mapped to a different pair (t_x, t_y) with t_x := ax + b and t_y := ay + b.

The hash-function does not generate collisions before the (mod n)-operation. Furthermore, every choice (a, b) is mapped to a different pair (t_x, t_y) with t_x := ax + b and t_y := ay + b.

$$t_x \equiv ax + b \qquad (\text{mod } p)$$

$$t_y \equiv ay + b \qquad (\text{mod } p)$$

The hash-function does not generate collisions before the (mod n)-operation. Furthermore, every choice (a, b) is mapped to a different pair (t_x, t_y) with t_x := ax + b and t_y := ay + b.

- $t_{x} \equiv ax + b \qquad (\mod p)$ $t_{y} \equiv ay + b \qquad (\mod p)$
- $t_{x} t_{y} \equiv a(x y) \qquad (\text{mod } p)$ $t_{y} \equiv ay + b \qquad (\text{mod } p)$

The hash-function does not generate collisions before the (mod n)-operation. Furthermore, every choice (a, b) is mapped to a different pair (t_x, t_y) with t_x := ax + b and t_y := ay + b.

- $t_x \equiv ax + b \qquad (\text{mod } p)$ $t_y \equiv ay + b \qquad (\text{mod } p)$
- $t_{x} t_{y} \equiv a(x y) \qquad (\text{mod } p)$ $t_{y} \equiv ay + b \qquad (\text{mod } p)$
 - $a \equiv (t_x t_y)(x y)^{-1} \pmod{p}$ $b \equiv t_y - ay \pmod{p}$

7.7 Hashing

2. Dec. 2024 288/330

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the mod *n*-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the mod *n*-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the mod *n*-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

Fix a value t_{χ} . There are p - 1 possible values for choosing t_{χ} .

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the mod *n*-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

Fix a value t_{χ} . There are p-1 possible values for choosing t_{χ} .

From the range 0, ..., p - 1 the values $t_x, t_x + n, t_x + 2n, ...$ map to t_x after the modulo-operation. These are at most $\lceil p/n \rceil$ values.

7.7 Hashing

2. Dec. 2024 289/330

As $t_{\mathcal{Y}} \neq t_{\mathcal{X}}$ there are

 $\left\lceil \frac{p}{n} \right\rceil - 1$

As $t_{\mathcal{Y}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1$$

As $t_{\mathcal{Y}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing $t_{\mathcal{Y}}$ such that the final hash-value creates a collision.

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing $t_{\mathcal{Y}}$ such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

7.7 Hashing

2. Dec. 2024 290/330

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\Pr_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}} \begin{bmatrix} t_{x} \mod n = h_{1} \\ \uparrow \\ t_{y} \mod n = h_{2} \end{bmatrix}$$

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \mod n = h_1 \\ t_y \mod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \mod n = h_1 \\ t_y \mod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

Note that the middle is the probability that $h(x) = h_1$ and $h(y) = h_2$. The total number of choices for (t_x, t_y) is p(p-1). The number of choices for t_x (t_y) such that $t_x \mod n = h_1$ $(t_y \mod n = h_2)$ lies between $\lfloor \frac{p}{n} \rfloor$ and $\lceil \frac{p}{n} \rceil$.

Definition 29

Let $d \in \mathbb{N}$; $q \ge (d+1)n$ be a prime; and let $\bar{a} \in \{0, \dots, q-1\}^{d+1}$. Define for $x \in \{0, \dots, q-1\}$

$$h_{\bar{a}}(x) := \left(\sum_{i=0}^{d} a_i x^i \mod q\right) \mod n \; .$$

Let $\mathcal{H}_n^d := \{h_{\bar{a}} \mid \bar{a} \in \{0, \dots, q-1\}^{d+1}\}$. The class \mathcal{H}_n^d is (e, d+1)-independent.

Note that in the previous case we had d = 1 and chose $a_d \neq 0$.

7.7 Hashing

2. Dec. 2024 292/330

For the coefficients $\bar{a} \in \{0, \dots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\tilde{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \mod q$$

For the coefficients $\bar{a} \in \{0, \dots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \mod q$$

The polynomial is defined by d + 1 distinct points.

Fix $\ell \le d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Fix $\ell \le d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$

Fix $\ell \le d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$ Then

 $h_{\tilde{a}} \in A^{\ell} \Leftrightarrow h_{\tilde{a}} = f_{\tilde{a}} \bmod n$ and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

Fix $\ell \le d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$ Then

$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n$$
 and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d + 1 points.

Fix $\ell \le d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$ Then

$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n$$
 and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d + 1 points.

We first fix the values for inputs x_1, \ldots, x_ℓ .

Fix $\ell \leq d + 1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q - 1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$ Then

$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n$$
 and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d + 1 points.

We first fix the values for inputs x_1, \ldots, x_ℓ . We have

 $|B_1| \cdot \ldots \cdot |B_\ell|$

possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$).

Now, we choose $d - \ell + 1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Now, we choose $d - \ell + 1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \leq \lceil \frac{q}{n} \rceil^\ell \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

 $\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}}$

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}}$$

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}}$$

Universal Hashing

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \le \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \le \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ \le \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}}$$

Universal Hashing

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

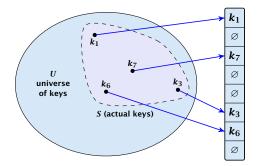
$$\begin{aligned} \frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} &\leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ &\leq \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}} \end{aligned}$$

Universal Hashing

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\begin{aligned} \frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} &\leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ &\leq \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}} \end{aligned}$$

This shows that the \mathcal{H} is (e, d + 1)-universal.


The last step followed from $q \ge (d+1)n$, and $\ell \le d+1$.

7.7 Hashing

2. Dec. 2024 295/330

Suppose that we **know** the set S of actual keys (no insert/no delete). Then we may want to design a **simple** hash-function that maps all these keys to different memory locations.

7.7 Hashing

2. Dec. 2024 296/330

7.7 Hashing

2. Dec. 2024 297/330

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

7.7 Hashing

2. Dec. 2024 297/330

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$\mathbb{E}[\#\mathsf{Collisions}] = \binom{m}{2} \cdot \frac{1}{n} \ .$$

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$\mathbb{E}[\#\mathsf{Collisions}] = \binom{m}{2} \cdot \frac{1}{n} \; .$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n = m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

7.7 Hashing

2. Dec. 2024 298/330

We can find such a hash-function by a few trials.

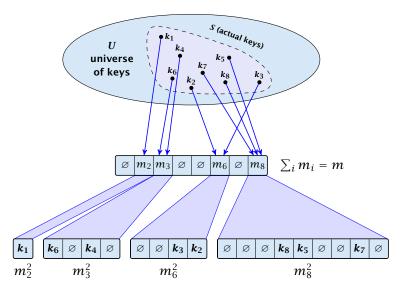
We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.


We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_j denote the number of items that are hashed to the *j*-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2 . The second function can be chosen such that all elements are mapped to different locations.

7.7 Hashing

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$\mathbf{E}\left[\sum_{j}m_{j}^{2}
ight]$$

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$\mathbf{E}\left[\sum_{j} m_{j}^{2}\right] = \mathbf{E}\left[2\sum_{j} \binom{m_{j}}{2} + \sum_{j} m_{j}\right]$$

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} \binom{m_{j}}{2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} \binom{m_{j}}{2}\right] + E\left[\sum_{j} m_{j}\right]$$

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} \binom{m_{j}}{2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} \binom{m_{j}}{2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} \binom{m_{j}}{2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} \binom{m_{j}}{2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$= 2\binom{m}{2}\frac{1}{m} + m = 2m - 1 \quad .$$

7.7 Hashing

We need only $\mathcal{O}(m)$ time to construct a hash-function h with $\sum_j m_j^2 = \mathcal{O}(4m)$, because with probability at least 1/2 a random function from a universal family will have this property.

Then we construct a hash-table h_j for every bucket. This takes expected time $\mathcal{O}(m_j)$ for every bucket. A random function h_j is collision-free with probability at least 1/2. We need $\mathcal{O}(m_j)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!

7.7 Hashing

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

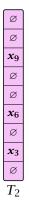
▶ Two hash-tables $T_1[0, ..., n-1]$ and $T_2[0, ..., n-1]$, with hash-functions h_1 , and h_2 .

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

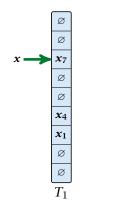
- ► Two hash-tables T₁[0,..., n 1] and T₂[0,..., n 1], with hash-functions h₁, and h₂.
- ► An object x is either stored at location T₁[h₁(x)] or T₂[h₂(x)].

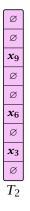
Goal:


Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- ► Two hash-tables T₁[0,..., n 1] and T₂[0,..., n 1], with hash-functions h₁, and h₂.
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.

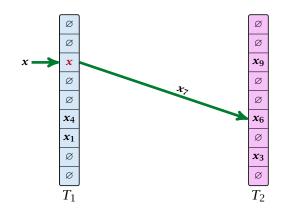
Insert:



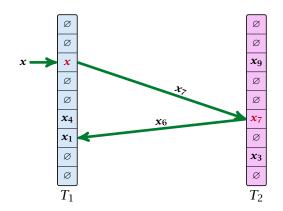


7.7 Hashing

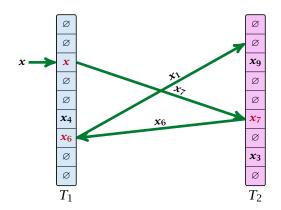
Insert:



7.7 Hashing


Insert:

7.7 Hashing


Insert:

7.7 Hashing

Insert:

7.7 Hashing

```
Algorithm 38 Cuckoo-Insert(x)
1: if T_1[h_1(x)] = x \lor T_2[h_2(x)] = x then return
 2: steps \leftarrow 1
 3: while steps \leq maxsteps do
4:
    exchange x and T_1[h_1(x)]
 5: if x = null then return
6: exchange x and T_2[h_2(x)]
7: if x = null then return
 8:
     steps \leftarrow steps +1
 9: rehash() // change hash-functions; rehash everything
10: Cuckoo-Insert(x)
```


We call one iteration through the while-loop a step of the algorithm.

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because x = null.

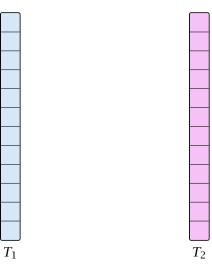
7.7 Hashing

What is the expected time for an insert-operation?

7.7 Hashing

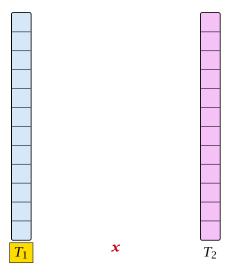
What is the expected time for an insert-operation?

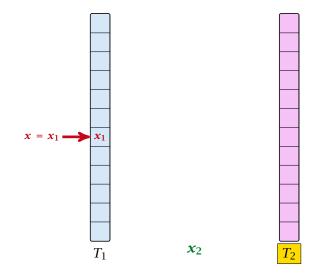
We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).


7.7 Hashing

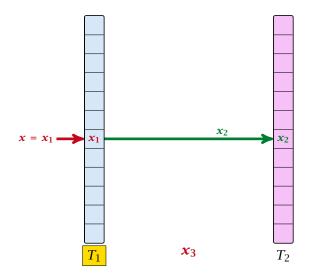
What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

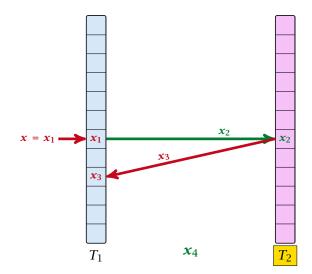

Formally what is the probability to enter an infinite loop that touches *s* different keys?



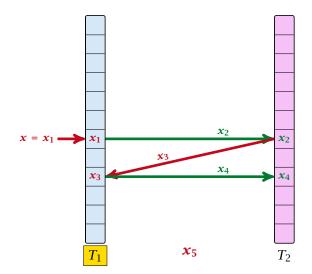
7.7 Hashing



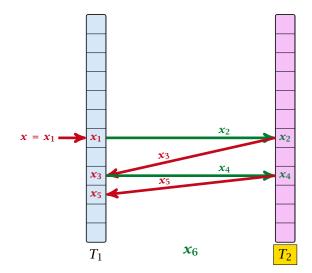
7.7 Hashing



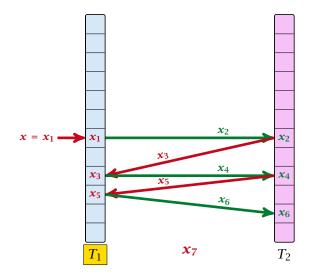
7.7 Hashing



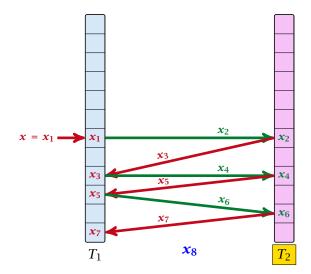
7.7 Hashing



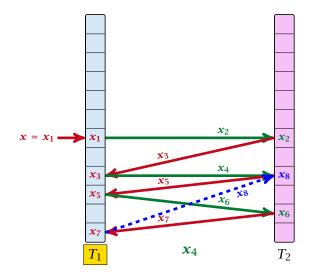
7.7 Hashing



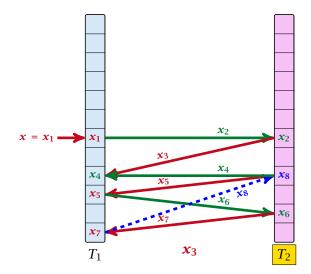
7.7 Hashing



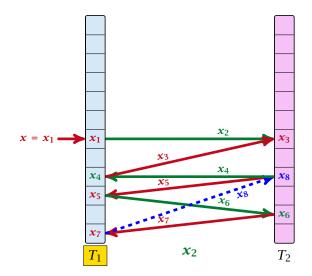
7.7 Hashing



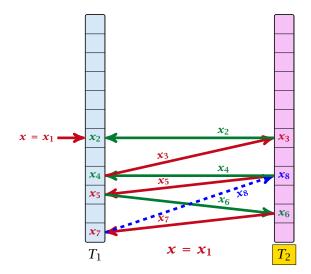
7.7 Hashing



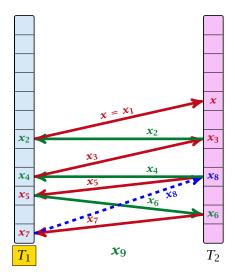
7.7 Hashing



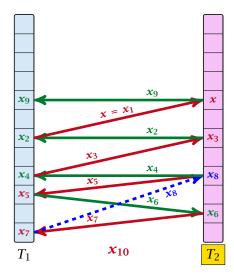
7.7 Hashing



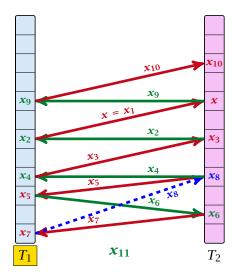
7.7 Hashing



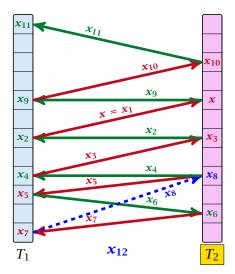
7.7 Hashing



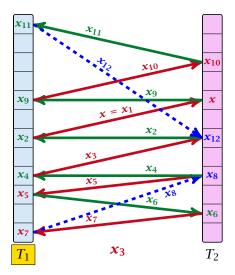
7.7 Hashing



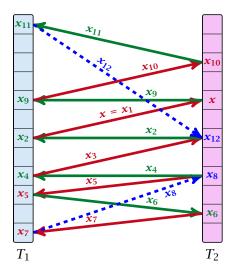
7.7 Hashing



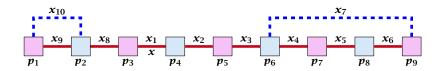
7.7 Hashing



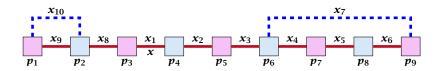
7.7 Hashing



7.7 Hashing

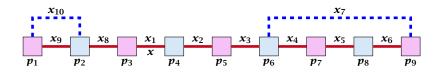


7.7 Hashing


7.7 Hashing

A cycle-structure of size *s* is defined by

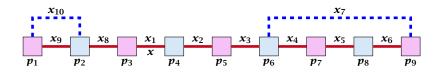
7.7 Hashing



A cycle-structure of size *s* is defined by

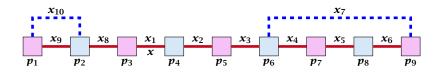
▶ s - 1 different cells (alternating btw. cells from T_1 and T_2).

7.7 Hashing



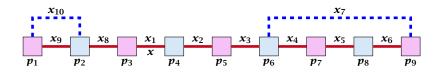
A cycle-structure of size *s* is defined by

- ▶ s 1 different cells (alternating btw. cells from T_1 and T_2).
- ▶ *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.


7.7 Hashing

A cycle-structure of size *s* is defined by

- ▶ s 1 different cells (alternating btw. cells from T_1 and T_2).
- ► *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.



A cycle-structure of size *s* is defined by

- ▶ s 1 different cells (alternating btw. cells from T_1 and T_2).
- s distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.

A cycle-structure of size *s* is defined by

- ▶ s 1 different cells (alternating btw. cells from T_1 and T_2).
- ▶ *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.
- One link represents key x; this is where the counting starts.

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_{\ell}) = p_i$$
 and $h_2(x_{\ell}) = p_j$

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_{\ell}) = p_i$$
 and $h_2(x_{\ell}) = p_j$

Observation:

If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \ge 3$.

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

7.7 Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ, s) -independent hash-function.

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ, s) -independent hash-function.

These events are independent.

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}.$

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

What is the probability that there exists an active cycle structure of size *s*?

The number of cycle-structures of size *s* is at most

 $s^3 \cdot n^{s-1} \cdot m^{s-1}$.

The number of cycle-structures of size *s* is at most

 $s^3 \cdot n^{s-1} \cdot m^{s-1}$.

There are at most s² possibilities where to attach the forward and backward links.

The number of cycle-structures of size *s* is at most

```
s^3 \cdot n^{s-1} \cdot m^{s-1}.
```

- There are at most s² possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.

The number of cycle-structures of size *s* is at most

```
s^3 \cdot n^{s-1} \cdot m^{s-1}.
```

- There are at most s² possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.

The number of cycle-structures of size *s* is at most

```
s^3 \cdot n^{s-1} \cdot m^{s-1}.
```

- There are at most s² possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2s}} = \frac{\mu^{2}}{nm} \sum_{s=3}^{\infty} s^{3} \left(\frac{m}{n}\right)^{s}$$

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s$$
$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s$$

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s$$
$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) .$$

The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s$$
$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) .$$

Here we used the fact that $(1 + \epsilon)m \le n$.

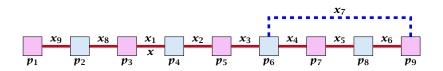
The probability that there exists an active cycle-structure is therefore at most

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s$$
$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) .$$

Here we used the fact that $(1 + \epsilon)m \le n$.

Hence,

$$\Pr[\mathsf{cycle}] = \mathcal{O}\left(\frac{1}{m^2}\right)$$
.



7.7 Hashing

2. Dec. 2024 313/330

Now, we analyze the probability that a phase is not successful without running into a closed cycle.

Sequence of visited keys:

 $x = x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_3, x_2, x_1 = x, x_8, x_9, \dots$

7.7 Hashing

2. Dec. 2024 315/330

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 30 If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

 $x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$

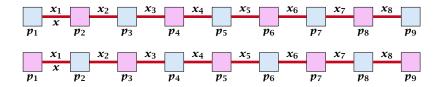
As $r \leq i - 1$ the length p of the sequence is

 $p=i+r+(j-i)\leq i+j-1\ .$

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:


 $x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$

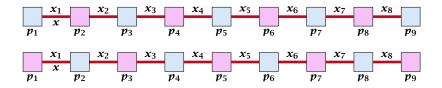
As $r \leq i - 1$ the length p of the sequence is

 $p=i+r+(j-i)\leq i+j-1\ .$

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$ has at least $\frac{p+2}{3}$ elements.

A path-structure of size *s* is defined by

7.7 Hashing


2. Dec. 2024 318/330

A path-structure of size *s* is defined by

▶ s + 1 different cells (alternating btw. cells from T_1 and T_2).

A path-structure of size *s* is defined by

- ▶ s + 1 different cells (alternating btw. cells from T_1 and T_2).
- ▶ *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.

A path-structure of size *s* is defined by

- ▶ s + 1 different cells (alternating btw. cells from T_1 and T_2).
- ▶ *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is either from T_1 or T_2 .

A path-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_{\ell}) = p_i$$
 and $h_2(x_{\ell}) = p_j$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size (2t + 2)/3.

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

7.7 Hashing

2. Dec. 2024 320/330

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \le 2\mu^2 \left(\frac{m}{n}\right)^{s-1}$$

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$
$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$
$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$
$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1}$$

7.7 Hashing

2. Dec. 2024 320/330

The probability that a given path-structure of size *s* is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} \le 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \le 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1} = 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} \ .$$

2. Dec. 2024 320/330

We choose maxsteps $\ge 3\ell/2 + 1/2$.

7.7 Hashing

2. Dec. 2024 321/330

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle] $\leq \Pr[\exists active path-structure of size at least \frac{2maxsteps+2}{2}]$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$\begin{split} &\Pr[\text{unsuccessful} \mid \text{no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \end{split}$$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

 $\leq \Pr[\exists active path-structure of size at least \frac{2maxsteps+2}{3}]$

 $\leq \Pr[\exists active path-structure of size at least \ell + 1]$

 $\leq \Pr[\exists active path-structure of size exactly \ell + 1]$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful } | \text{ no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \end{aligned}$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful } | \text{ no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2} \end{aligned}$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful} \mid \text{no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2} \end{aligned}$

by choosing $\ell \geq \log\left(\frac{1}{2\mu^2 m^2}\right) / \log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2 m^2\right) / \log\left(1+\epsilon\right)$

We choose maxsteps $\ge 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\begin{aligned} &\Pr[\text{unsuccessful} \mid \text{no cycle}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ &\leq \Pr[\exists \text{ active path-structure of size at least } \ell + 1] \\ &\leq \Pr[\exists \text{ active path-structure of size exactly } \ell + 1] \\ &\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2} \end{aligned}$

by choosing $\ell \geq \log\left(\frac{1}{2\mu^2m^2}\right)/\log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2m^2\right)/\log\left(1+\epsilon\right)$

This gives maxsteps = $\Theta(\log m)$.

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(\frac{1}{m^2}\Big)$$

and

 $\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\Big(\frac{1}{m^2}\Big)$

7.7 Hashing

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(\frac{1}{m^2}\Big)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle]

7.7 Hashing

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(rac{1}{m^2}\Big)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle] $\geq c \cdot Pr[no cycle]$

7.7 Hashing

So far we estimated

$$\Pr[\mathsf{cycle}] \le \mathcal{O}\Big(rac{1}{m^2}\Big)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no cycle}] \le \mathcal{O}\Big(\frac{1}{m^2}\Big)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle] $\geq c \cdot Pr[no cycle]$

for a suitable constant c > 0.

The expected number of complete steps in the successful phase of an insert operation is:

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

= $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

= $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$ $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

- = $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ no cycle}] / \Pr[\text{no cycle}]$

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t \ge 1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]$

We have

Pr[search at least t steps | successful]

- = $\Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{successful}]$
- $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{successful}] / \Pr[\text{no cycle}]$ $\leq \frac{1}{c} \Pr[\text{search at least } t \text{ steps } \land \text{ no cycle}] / \Pr[\text{no cycle}]$
- $= \frac{1}{c} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$.

Hence,

E[number of steps | phase successful]

7.7 Hashing

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$
$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3}$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) .$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps } | \text{ no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) \ .$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

7.7 Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires *m* insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p)$.

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = O(1/m^2)$ (probability $O(1/m^2)$ of running into a cycle and probability $O(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires *m* insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p).$

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

```
\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .
```

Let Z_i denote the event that the *i*-th rehash occurs:

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

```
\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .
```

Let Z_i denote the event that the *i*-th rehash occurs:

$$\Pr[Z_i] \le \prod_{j=0}^{i-1} \Pr[Y_h \mid Z_j] \le p^i$$

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs: The 0-th (re)hash is the initial configuration when doing the $\Pr[Z_i] \leq \prod_{j=0}^{i-1} \Pr[Y_h \mid Z_j] \leq p^i$

Let X_i^s , $s \in \{1, ..., m + 1\}$ denote the cost for inserting the *s*-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

 $\mathbb{E}[X_i^s]$

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs: The 0-th (re)hash is the initial configuration when doing the $\Pr[Z_i] \leq \prod_{j=0}^{i-1} \Pr[Y_h \mid Z_j] \leq p^i$

Let X_i^s , $s \in \{1, ..., m + 1\}$ denote the cost for inserting the *s*-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

 $E[X_i^S] = E[steps | phase successful] \cdot Pr[phase successful]$ $+ maxsteps \cdot Pr[not successful]$

Formal Proof

Let Y_i denote the event that the *i*-th rehash occurs and does not lead to a valid configuration (i.e., one of the m + 1 insertions fails):

 $\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p .$

Let Z_i denote the event that the *i*-th rehash occurs: The 0-th (re)hash is the initial configuration when doing the $\Pr[Z_i] \leq \prod_{j=0}^{i-1} \Pr[Y_h \mid Z_j] \leq p^i$

Let X_i^s , $s \in \{1, ..., m + 1\}$ denote the cost for inserting the *s*-th element during the *i*-th rehash (assuming *i*-th rehash occurs):

$$\begin{split} \mathbf{E}[X_i^s] &= \mathbf{E}[\mathsf{steps} \mid \mathsf{phase successful}] \cdot \Pr[\mathsf{phase successful}] \\ &+ \max \mathsf{steps} \cdot \Pr[\mathsf{not successful}] = \mathcal{O}(1) \ . \end{split}$$

$\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

7.7 Hashing

2. Dec. 2024 327/330

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}\mathbf{E}[Z_{i}]\cdot\mathbf{E}[X_{s}^{i}]$$

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$\mathbb{E}\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}\mathbb{E}[Z_{i}] \cdot \mathbb{E}[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$

 $\mathbf{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$

Note that Z_i is independent of X_j^s , $j \ge i$ (however, it is not independent of X_j^s , j < i). Hence,

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$

$$= \mathcal{O}(1) .$$

7.7 Hashing

2. Dec. 2024 327/330

What kind of hash-functions do we need?

7.7 Hashing

2. Dec. 2024 328/330

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

How do we make sure that $n \ge (1 + \epsilon)m$?

```
• Let \alpha := 1/(1 + \epsilon).
```


- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.

- Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever *m* drops below $\alpha n/4$ we divide *n* by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Lemma 31 *Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.*

7.7 Hashing

2. Dec. 2024 330/330

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

The $1/(2(1+\epsilon))$ fill-factor comes from the fact that the total hash-table is of size 2n (because we have two tables of size n); moreover $m \le (1+\epsilon)n$.

