

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.

3 Goals	25. Oct. 2024
	3/113
	3 Goals

4 Modellii	ng Issues	
How do	you measure?	
•	ementing and testing on representative inputs How do you choose your inputs? May be very time-consuming. Very reliable results if done correctly. Results only hold for a specific machine and for a spec of inputs.	cific set
•	pretical analysis in a specific model of computation Gives asymptotic bounds like "this algorithm always in time $\mathcal{O}(n^2)$ ". Typically focuses on the worst case. Can give lower bounds like "any comparison-based so algorithm needs at least $\Omega(n \log n)$ comparisons in the case".	runs in orting
Harald Räck	4 Modelling Issues	25. Oct. 2024 5/113

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

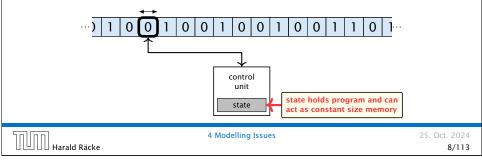
Suppose *n* numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is *n* instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

החוחר	Harald Räcke
	Harald Räcke

4 Modelling Issues

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.



Model of Computation

How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

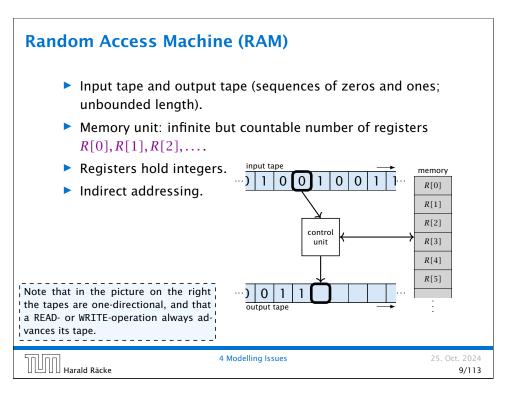
Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Harald Räcke

6/113

4 Modelling Issues

5. Oct. 2024 7/113



Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- output operations ($R[i] \rightarrow$ output tape)
 - ► WRITE *i*
- register-register transfers
 - $\blacktriangleright R[j] := R[i]$
 - ▶ R[j] := 4
- indirect addressing
 - $\blacktriangleright R[j] := R[R[i]]$

loads the content of the R[i]-th register into the j-th register

10/113

 $\blacktriangleright R[R[i]] := R[j]$

loads the content of the j-th into the R[i]-th register

ากปกก	Harald Räcke	

4 Modelling Issues

Model of Computation uniform cost model Every operation takes time 1. logarithmic cost model The cost depends on the content of memory cells: • The time for a step is equal to the largest operand involved; The storage space of a register is equal to the length (in bits) of the largest value ever stored in it. Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w , where usually $w = \log_2 n$. The latter model is quite realistic as the word-size of a standard computer that handles a problem of size nmust be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all ! its memory. 4 Modelling Issues 25. Oct. 2024 |||||||| Harald Räcke 12/113

Random Access Machine (RAM)

Operations

∙ ► branchin ► jump		ased on comparisons
sets	os to position <i>x</i> in the instruction counter to s the next operation to	5,
jump if no ▶ jump	$z \ x \ R[i]$ $b \ to \ x \ if \ R[i] = 0$ $t \ the \ instruction \ countries i$ $b \ to \ R[i] \ (indirect \ jump)$	
 arithmeti 	c instructions: +, -, := $R[j] + R[k];$.,
<i>R</i> [<i>i</i>]	:= -R[k];	The jump-directives are very close to the jump-instructions contained in the as- sembler language of real machines.
Harald Räcke	4 Modelling	Issues 25. Oct. 2024 11/113

4 Modellin	g Issues	
Example	2	
	Algorithm 1 RepeatedSquaring (n)	
	1: $r \leftarrow 2$;	
	2: for $i = 1 \rightarrow n$ do 3: $r \leftarrow r^2$ 4: return r	
	3: $r \leftarrow r^2$	
	4: return γ	
► (ng time (for Line 3): uniform model: n steps ogarithmic model: $2+3+5+\cdots+(1+2^n) = 2^{n+1}-1+n = \Theta(2^n)$	
	e requirement:	
۲	uniform model: $\mathcal{O}(1)$ ogarithmic model: $\mathcal{O}(2^n)$	
Harald Räcke	4 Modelling Issues	25. Oct. 2024 13/113

There are different types of complexity bounds:

best-case complexity:

 $C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$

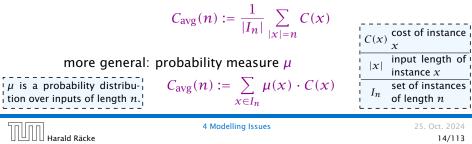
Usually easy to analyze, but not very meaningful.

worst-case complexity:

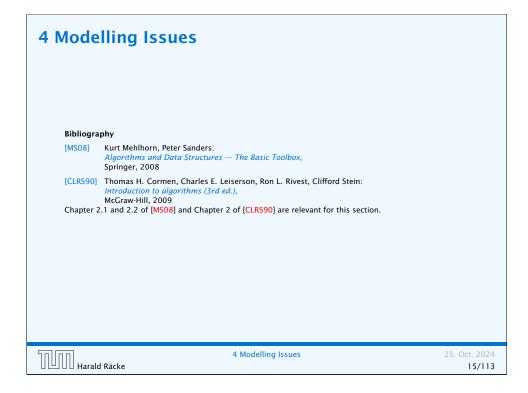
 $C_{wc}(n) := \max\{C(x) \mid |x| = n\}$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:



14/113



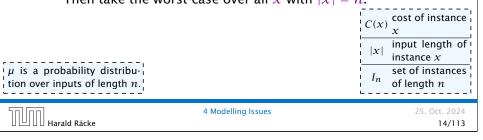
There are different types of complexity bounds:

amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with |x| = n.



5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already guite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Asymptotic Notation

Formal Definition

Let f, g denote functions from \mathbb{N} to \mathbb{R}^+ .

- ▶ $\mathcal{O}(f) = \{g \mid \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- ▶ $o(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- ► $w(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than f)

הח הר	5 Asymptotic Notation	25. Oct. 202
Harald Räcke		16/11

Asymptotic Notation

Abuse of notation

- 1. People write f = O(g), when they mean $f \in O(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that h(n) = f(n) + z(n).

2. In this context f(n) does **not** mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).

3. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2}n + o(n)$ comparisons.

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

 g ∈ Ω(f): 0 < lim_{n→∞} g(n)/f(n) ≤ ∞ g ∈ Θ(f): 0 < lim_{n→∞} g(n)/f(n) < ∞ g ∈ o(f): lim_{n→∞} g(n)/f(n) = 0 g ∈ ω(f): lim_{n→∞} g(n)/f(n) = ∞ Note that for the version of the Landau notation defined here, we assume that f and g are positive functions. There also exist versions for arbitrary functions, and for the case that the limes is not infinity. 	• $g \in \mathcal{O}(f)$:	$0 \leq \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$	
 g ∈ o(f): lim_{n→∞} g(n)/f(n) = 0 g ∈ ω(f): lim_{n→∞} g(n)/f(n) = ∞ Note that for the version of the Landau notation defined here, we assume that f and g are positive functions. There also exist versions for arbitrary functions, and for the case that the limes is not infinity. 	• $g \in \Omega(f)$:	$0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$	
► $g \in \omega(f)$: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$ There also exist versions for arbitrary functions, and for the case that the limes is not infinity. • Asymptotic Notation • Context •	• $g \in \Theta(f)$:	$0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$	
functions, and for the case that the limes is not infinity.			
limes is not infinity. 5 Asymptotic Notation 25. Oct. 2024	• $g \in \omega(f)$:	$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$	• There also exist versions for arbitrary
	Harald Räcke	5 Asymptotic Notatio	

Asymptotic Notation Abuse of notation	
4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g)$ $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again t	
2. In this context $f(n)$ does not mean the function f evaluated at n , but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).	3. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2}n + o(n)$ comparisons.

Asymptotic Notation in Equations

How do we interpret an expression like:

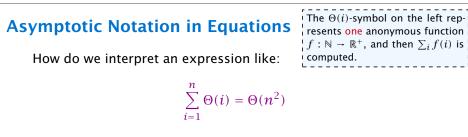
$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Harald Räcke	5 A

```
Asymptotic Notation
```



Careful!

"It is understood" that every occurence of an \mathcal{O} -symbol (or $\Theta, \Omega, o, \omega$) on the left represents one anonymous function.

Hence, the left side is not equal to

$$\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$$

tion.

 $\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$ does not really have a reasonable interpreta-

21/113

19/113

5 Asymptotic Notation

Asymptotic Notation in Equations

How do we interpret an expression like:

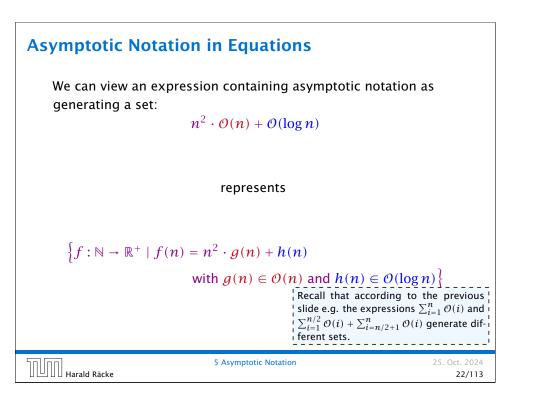
 $2n^2 + \mathcal{O}(n) = \Theta(n^2)$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

Harald Räcke

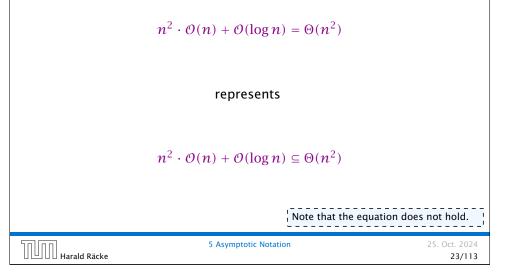
5 Asymptotic Notation

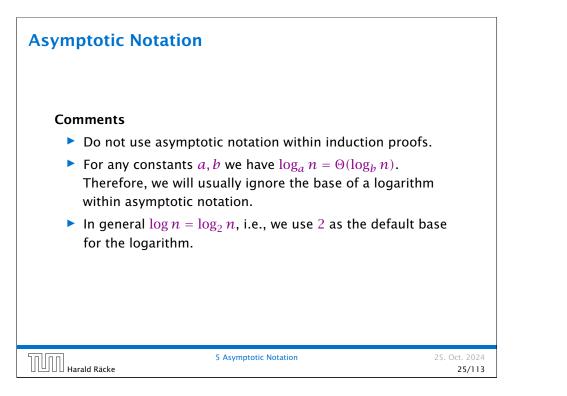
25. Oct. 2024 20/113



Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:





Asymptotic Notation

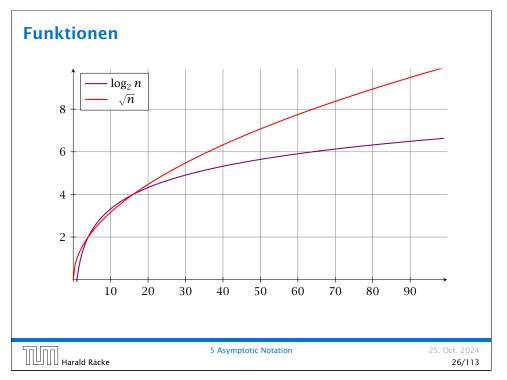
Lemma 3

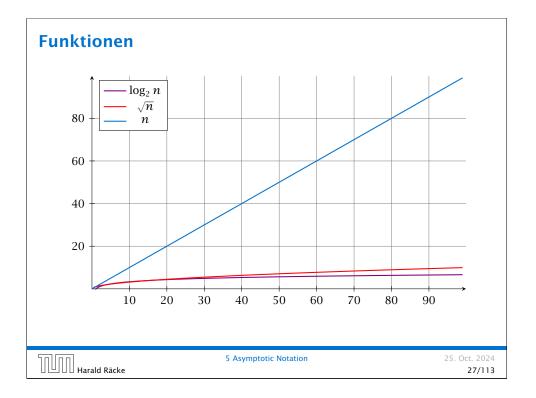
Let f, g be functions with the property $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

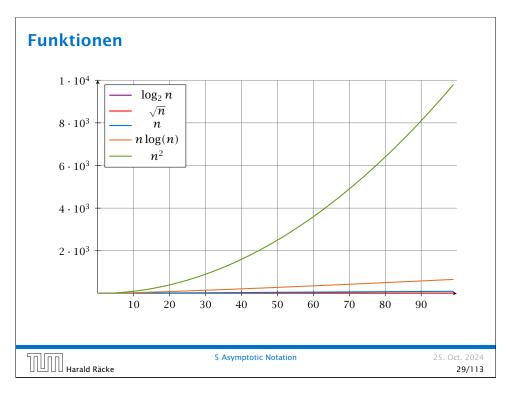
- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

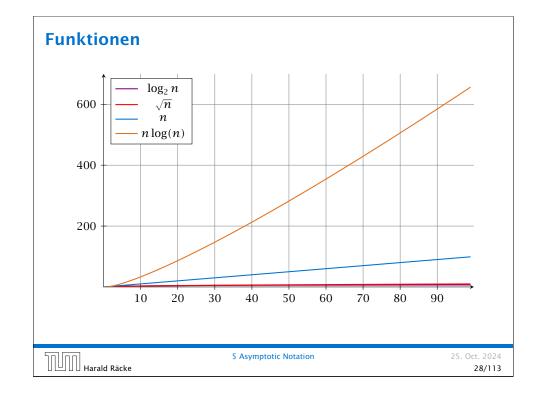
The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\})$.

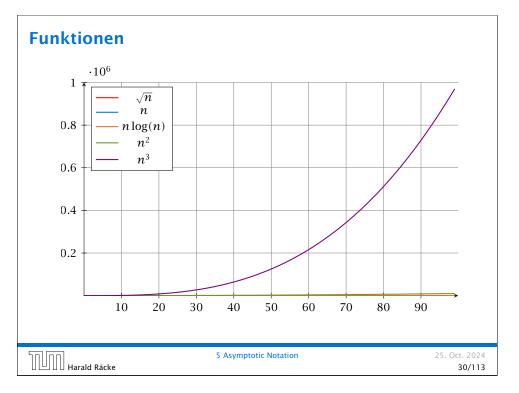
החוחר	5 Asymptotic Notation	25. Oct. 2024
🛛 🕒 🖯 Harald Räcke		24/113

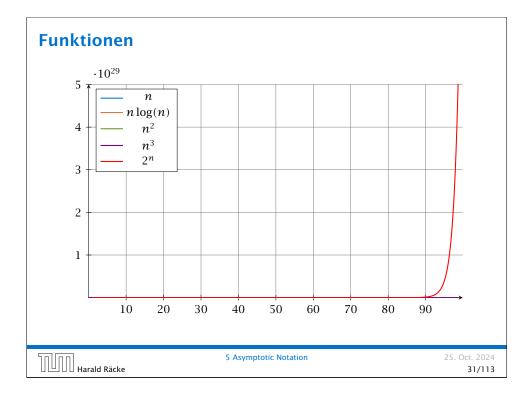












Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.
 - Algorithm B. Running time $g(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

Laufzeiten

Funktion	Eingabelänge n							
f(n)	10	10 ²	10 ³	104	10 ⁵	10 ⁶	107	108
$\log n$	33 ns	66 ns	0.1µs	0.1µs	0.2µs	0.2µs	0.2µs	0.3µs
\sqrt{n}	32 ns	0.1µs	0.3µs	1µs	3.1µs	10µs	31µs	0.1ms
п	100 ns	1µs	10µs	0.1 ms	1 ms	10 ms	0.1s	1s
$n\log n$	0.3µs	6.6µs	0.1 ms	1.3ms	16 ms	0.2s	2.3s	27s
$n^{3/2}$	0.3µs	10µs	0.3ms	10 ms	0.3s	10 s	5.2min	2.7h
n^2	1µs	0.1 ms	10 ms	1 s	1.7min	2.8h	11 d	3.2y
n^3	10 µs	10 ms	10 s	2.8h	115 d	317y	$3.2 \cdot 10^5$ y	
1.1^{n}	26ns	0.1 ms	$7.8 \cdot 10^{25}$ y					
2 ⁿ	10µs	$4 \cdot 10^{14}$ y						
n!	36 ms	$3 \cdot 10^{142}$ y						

1 Operation = 10ns; 100MHz

Alter des Universums: ca. $13.8 \cdot 10^9$ y

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for $n \rightarrow \infty$ and $m \rightarrow \infty$ we have to extend the definition to multiple variables.

Formal Definition

Let f, g denote functions from \mathbb{N}^d to \mathbb{R}_0^+ .

• $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists N \in \mathbb{N}_0 \ \forall \vec{n} \text{ with } n_i \ge N \text{ for some } i : [g(\vec{n}) \le c \cdot f(\vec{n})] \}$

(set of functions that asymptotically grow not faster than f)

5. Oct. 2024 33/113

Multiple Variables in Asymptotic Notation

Example 4

]]]]]]] Harald Räcke

- $f : \mathbb{N} \to \mathbb{R}_0^+$, f(n, m) = 1 und $g : \mathbb{N} \to \mathbb{R}_0^+$, g(n, m) = n 1then $f = \mathcal{O}(g)$ does not hold
- ► $f : \mathbb{N} \to \mathbb{R}_0^+$, f(n, m) = 1 und $g : \mathbb{N} \to \mathbb{R}_0^+$, g(n, m) = nthen: $f = \mathcal{O}(g)$
- $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, f(n, m) = 1 und $g: \mathbb{N}_0 \to \mathbb{R}_0^+$, g(n, m) = nthen $f = \mathcal{O}(g)$ does not hold

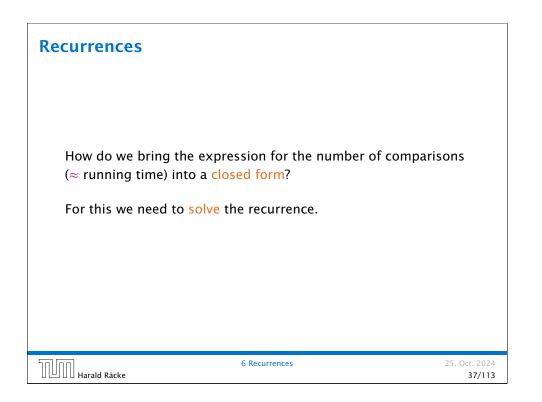
Harald Räcke	5 Asymptotic Notation	25. Oct. 2024 35/113

6 Recurrence	S	
	Algorithm 2 mergesort(list L)	
	$1: n \leftarrow \text{size}(L)$	
	2: if $n \le 1$ return L	
	3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$	
	4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$	
	1: $n \leftarrow \text{size}(L)$ 2: if $n \le 1$ return L 3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2}]]$ 4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$ 5: mergesort(L_1)	
	6: mergesort(L_2) 7: $L \leftarrow merge(L_1, L_2)$ 8: return L	
	7: $L \leftarrow \operatorname{merge}(L_1, L_2)$	
	8: return L	
This algorithn	n requires	
T(n) = T	$T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right)$	+ O(n)
comparisons	when $n>1$ and 0 comparisons when r	$n \leq 1$.

6 Recurrences

36/113

Stypes Constant Stypes Styp



Methods for Solving Recurrences

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Harald Räcke	6 Recurrences	25. Oct. 2024 38/113

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \leq \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \geq 2\\ 0 & \text{otherwise} \end{cases}$$

Informal way: Assume that instead we have

 $T(n) \leq \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

Harald	Räcke
Harald	Räcke

6.1 Guessing+Induction

25. Oct. 2024 40/113

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

💾 🛛 🖓 Harald Räcke

5. Oct. 2024 39/113

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant *d*. Then

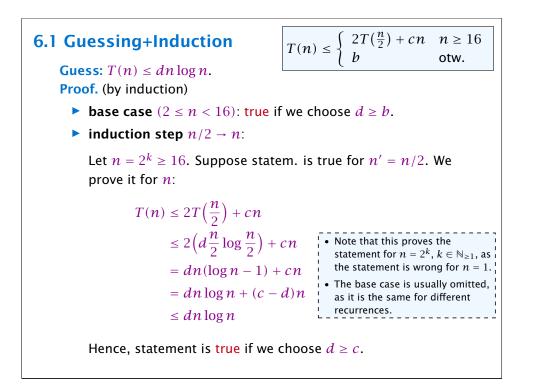
6 Recurrences

 $T(n) \le 2T\left(\frac{n}{2}\right) + cn$ $\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$ $= dn(\log n - 1) + cn$ $= dn\log n + (c - d)n$ $\le dn\log n$

if we choose $d \ge c$.

Formally, this is not correct if n is not a power of 2. Also even in this case one would need to do an induction proof.

Τ



6.1 Guessing+Induction We also make a guess of $T(n) \leq dn \log n$ and get $T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$ $\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$ $\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1$ $\le 2(d(n/2 + 1)\log(n/2 + 1)) + cn$ $\boxed{\frac{n}{2} + 1 \le \frac{9}{16}n} \le dn \log\left(\frac{9}{16}n\right) + 2d \log n + cn$ $\left|\log \frac{9}{16}n = \log n + (\log 9 - 4)\right| = dn \log n + (\log 9 - 4)dn + 2d \log n + cn$ $\log n \le \frac{n}{4} \le dn \log n + (\log 9 - 3.5) dn + cn$ $\leq dn \log n - 0.33 dn + cn$ $\leq dn \log n$ for a suitable choice of d. 6.1 Guessing+Induction

Harald Räcke

44/113

6.1 Guessing+Induction

How do we get a result for all values of *n*?

We consider the following recurrence instead of the original one:

 $T(n) \leq \begin{cases} 2T(\left\lceil \frac{n}{2} \right\rceil) + cn & n \ge 16\\ b & \text{otherwise} \end{cases}$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

6.1 Guessing+

Harald Räcke

-Induction		

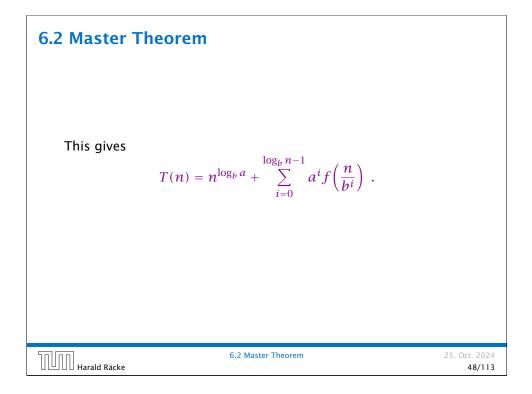
43/113

6.2 Master Theorem	Note that the cases do not cover all pos- sibilities.
recurrence	denote constants. Consider the = $aT\left(\frac{n}{b}\right) + f(n)$.
Case 1. If $f(n) = O(n^{\log_b(a) - \epsilon})$ th	en $T(n) = \Theta(n^{\log_b a}).$
Case 2. If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ $k \ge 0$.	a) then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$,
Case 3. If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ and $af(\frac{n}{b}) \le cf(n)$ for some	nd for sufficiently large n constant $c < 1$ then $T(n) = \Theta(f(n))$.
Harald Räcke	6.2 Master Theorem 25. Oct. 2024 45/113

6.2 Master Theorem

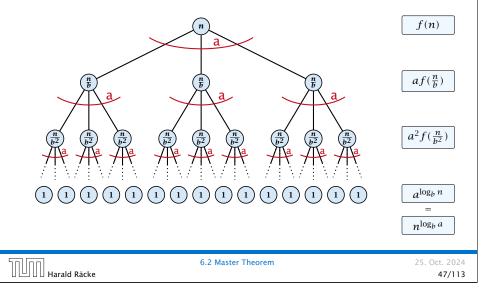
We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

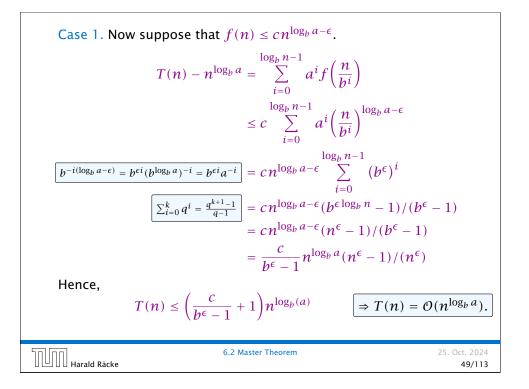
החוחר	6.2 Master Theorem	25. Oct. 2024
UUU Harald Räcke		46/113

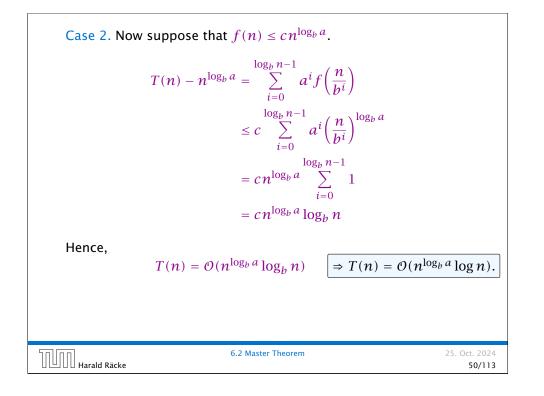


The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:







Case 2. Now suppose that
$$f(n) \leq c n^{\log_b a} (\log_b(n))^k$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b\left(\frac{n}{b^i}\right)\right)^k$$

$$n = b^\ell \Rightarrow \ell = \log_b n = c n^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b\left(\frac{b^\ell}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=1}^{\ell} i^k \approx \frac{1}{k} \ell^{k+1}$$

$$\approx \frac{c}{k} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$

Case 2. Now suppose that
$$f(n) \ge c n^{\log_b a}$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\ge c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n-1} 1$$

$$= c n^{\log_b a} \log_b n$$
Hence,

$$T(n) = \Omega(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \Omega(n^{\log_b a} \log n).$$

Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \le cf(n)$, for c < 1.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_{b} a} = \sum_{i=0}^{\log_{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)$$

$$\leq \sum_{i=0}^{\log_{b} n-1} c^{i} f(n) + \mathcal{O}(n^{\log_{b} a})$$

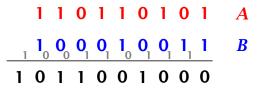
$$\boxed{q < 1: \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q}} \leq \frac{1}{1-c} f(n) + \mathcal{O}(n^{\log_{b} a})$$
Hence,
$$T(n) \leq \mathcal{O}(f(n)) \qquad \Rightarrow T(n) = \Theta(f(n)).$$

$$\boxed{\text{Where did we use } f(n) \geq \Omega(n^{\log_{b} a + \epsilon})?}$$

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

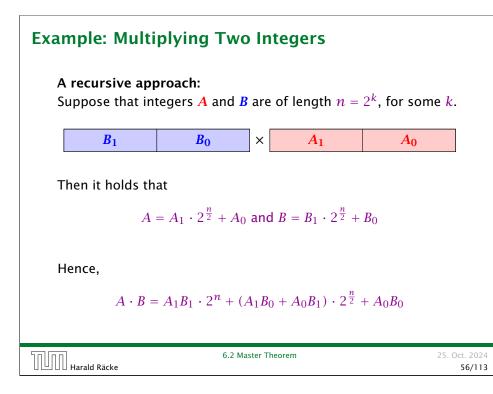
For this we first need to be able to add two integers **A** and **B**:



This gives that two *n*-bit integers can be added in time O(n).

Harald Räcke	6.2 Master Theorem	25. (

Oct. 2024 54/113



Example: Multiplying Two Integers

Suppose that we want to multiply an *n*-bit integer A and an *m*-bit integer B ($m \le n$).

100		
	0	1
• This is also nown as the "school network" 1 0 0 0	1	0
• Note that the intermediate numbers that are generated can have	0	0
at most $m + n \le 2n$ bits. 1 0 0 1 0	0	0
101110	1	1
Time requirement:		
► Computing intermediate results: $O(n$	m)	
• Adding <i>m</i> numbers of length $\leq 2n$: O	((n	n +

החוחר	6.2 Master Theorem	25. Oct. 2024
UUU Harald Räcke		55/113

Example: Mu	Itiplying Two Integers	
Example. Mu	Itiplying Two Integers	
_		
A	Algorithm 3 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
	6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$T(\frac{n}{2}) 2T(\frac{n}{2}) + \mathcal{O}(n)$
	7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$T(\frac{n}{2})$
	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$
		,

We get the following recurrence:

Harald Räcke

 $T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n)$.

6.2 Master Theorem

57/113

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a = 4, b = 2, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

 \Rightarrow Not better then the "school method".

Harald Räcke	6.2 Master Theorem	25. 00

Example: Multiplying Two Integers

We get the following recurrence:

 $T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59}).$

A huge improvement over the "school method".

|||||||| Harald Räcke

25. Oct. 2024 60/113

58/113

Example: Multiplying Two Integers

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,		
nence,	Algorithm 4 mult(A,B)	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: split A into A_0 and A_1	$\mathcal{O}(n)$
	4: split <i>B</i> into B_0 and B_1	$\mathcal{O}(n)$
A more precise	5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
(correct) analysis	6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
would say that computing Z_1	7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{n}{2}) + \mathcal{O}(n)$
needs time	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$
$T(\frac{n}{2}+1)+\mathcal{O}(n).$		
[חח] [חר]	6.2 Master Theorem	25. Oct. 2024
🛛 💾 🛛 🖓 Harald Räcke		59/113

6.3 The Characteristic Polynomial

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial

Observations:

- The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- > Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

הח הר	Harald Räcke
비비비비	Harald Räcke

6.3 The Characteristic Polynomial

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

 $\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

6.3 The Characteristic Polynomial

25. Oct. 2024 64/113

62/113

The Homogenous Case

The solution space

 $S = \left\{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation} \right\}$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2\cdot\lambda^{n-2} + \cdots + c_k\cdot\lambda^{n-k} = 0$$

for all $n \ge k$.

 6.3 The Characteristic Polynomial
 25. Oct. 2024

 Harald Räcke
 63/113

The Homogenous Case

Lemma 6

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

 $\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

		$lpha_2\cdot\lambda_2 \ lpha_2\cdot\lambda_2^2$							
$lpha_1\cdot\lambda_1^k$	+	$\alpha_2 \cdot \lambda_2^k$	+	:	+	$\alpha_k \cdot \lambda_k^k$	=	T[k]	

Harald Räcke	6.3 The Characteristic Polynomial	25. Oct. 2024
🛛 🕒 🛛 🖓 Harald Räcke		66/113

Computing the De	terminant	
$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 \\ \vdots & \vdots & & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k \end{vmatrix}$	$ \begin{split} \lambda_k \\ \lambda_k^2 \\ \vdots \\ \lambda_k^k \\ \end{vmatrix} &= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix} 1 & 1 & \cdots \\ \lambda_1 & \lambda_2 & \cdots \\ \vdots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots \end{vmatrix} \\ &= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{k-2} \\ 1 & \lambda_2 & \cdots & \lambda_2^{k-2} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_k & \cdots & \lambda_k^{k-2} \end{vmatrix} $	
Harald Räcke	6.3 The Characteristic Polynomial	25. Oct. 2024 68/113

The Homogenous Case

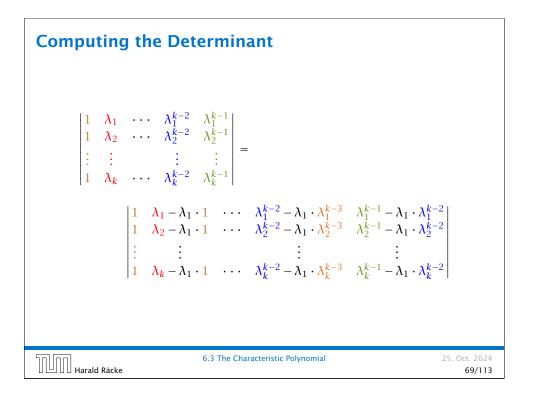
Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$\begin{pmatrix} \lambda_1 \\ \lambda_1^2 \end{pmatrix}$	$\lambda_2 \ \lambda_2^2$	· · · ·	$\left. egin{array}{c} \lambda_k \ \lambda_k^2 \end{array} ight angle$	$\left(\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right)$		$ \left(\begin{array}{c} T[1] \\ T[2] \\ \vdots \\ T[k] \end{array}\right) $
λ_1^k	λ_2^k	: 	λ_k^k	$\left(\begin{array}{c} \vdots \\ \alpha_k \end{array}\right)$	_	$\left(\begin{array}{c} \vdots \\ T[k] \end{array}\right)$

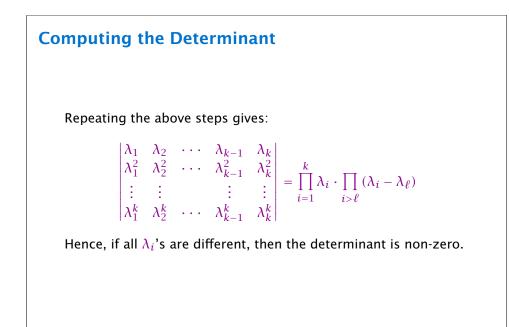
We show that the column vectors are linearly independent. Then the above equation has a solution.

החוחר	6.3 The Characteristic Polynomial	25. Oct. 2024
UUU Harald Räcke		67/113



Computing the Determinant

$$\begin{vmatrix} 1 & \lambda_{1} - \lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2} - \lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1} - \lambda_{1} \cdot \lambda_{1}^{k-2} \\ 1 & \lambda_{2} - \lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2} - \lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1} - \lambda_{1} \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{k} - \lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2} - \lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1} - \lambda_{1} \cdot \lambda_{k}^{k-2} \end{vmatrix} = \\ \begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \end{vmatrix}$$



$\begin{array}{c} \left|\begin{array}{cccc} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \\ \end{array}\right| = \\ \left|\begin{array}{c} k \\ \frac{k}{1}(\lambda_{i} - \lambda_{1}) \cdot \\ \frac{1}{1} & \lambda_{2} & \cdots & \lambda_{2}^{k-3} & \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2} \\ \end{array}\right| = \\ \left|\begin{array}{c} k \\ \frac{1}{1} & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2} \\ \end{array}\right|$

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a colution to the resurrence but also $m \lambda_i^n$

2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

 $P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$

Since λ_i is a root we can write this as $Q[\lambda] \cdot (\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

Harald Räcke

6.3 The Characteristic Polynomial

72/113

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_{0} \underbrace{n\lambda_{i}^{n}}_{T[n]} + c_{1} \underbrace{(n-1)\lambda_{i}^{n-1}}_{T[n-1]} + \dots + c_{k} \underbrace{(n-k)\lambda_{i}^{n-k}}_{T[n-k]} = 0$$

$$6.3 \text{ The Characteristic Polynomial} \qquad 25. \text{ Oct. 2024}$$

Harald Räcke

The Homogeneous Case

Lemma 7

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

 $c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$

Let λ_i , i = 1, ..., m be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i - 1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ij} 's is a solution to the recurrence.

Harald Räcke

6.3 The Characteristic Polynomial

25. Oct. 2024 76/113

74/113

The Homogeneous Case

Suppose λ_i has multiplicity *j*. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

 $c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$

6.3 The Characteristic Polynomial

We can continue j - 1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, ..., j-1$.

Harald Räcke

25. Oct. 2024 75/113

Example: Fibonacci Sequence		
T[0] = 0		
T[1] = 1		
$T[n] = T[n-1] + T[n-2]$ for $n \ge 2$		
The characteristic polynomial is		
$\lambda^2 - \lambda - 1$		
Finding the roots, gives		
$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$		

6.3 The Characteristic Polynomial

Example: Fibonacci Sequence

Hence, the solution is of the form

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

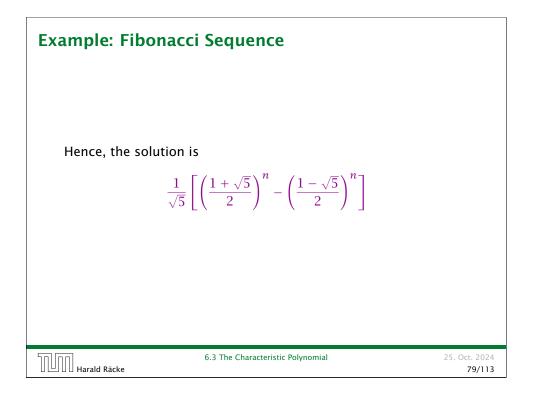
$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

T[1] = 1 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

Harald Räcke	6.3 The Characteristic Polynomial	25

The Inhomogeneous Case Consider the recurrence relation: $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$ with $f(n) \neq 0$. While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.



The Inhomogeneous Case		
The general solution of the recurrence relation is		
$T(n) = T_h(n) + T_p(n) ,$		
where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.		
There is no general method to find a particular solution.		

25. Oct. 2024 80/113

78/113

6.3 The Characteristic Polynomial

The Inhomogeneous Case

Example:

T[n] = T[n-1] + 1 T[0] = 1

Then,

T[n-1] = T[n-2] + 1 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

or

 $T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

5000	Harald Räcke
	Harald Räcke

6.3 The Characteristic Polynomial

25. Oct. 2024 82/113

The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

T[n] = 2T[n-1] - T[n-2] + 2n - 1

The Inhomogeneous Case

Example: Characteristic polynomial:

 $\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

T[0] = 1 gives $\alpha = 1$.

T[1] = 2 gives $1 + \beta = 2 \Longrightarrow \beta = 1$.

Harald Räcke	6.3 The Characteristic Polynomial	25. Oct. 2024 83/113

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$
$$- 2T[n-2] + T[n-3] - 2n + 3$$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

6.4 Generating Functions

Definition 8 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n ;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} \frac{a_n}{n!} z^n \; .$$

Harald Räcke

6.4 Generating Functions

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n \ge 0} (a_n + b_n) z^n$.
- Multiplication: $f \cdot g := \sum_{n \ge 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

|||||||| Harald Räcke

25. Oct. 2024 88/113

86/113

6.4 Generating Functions

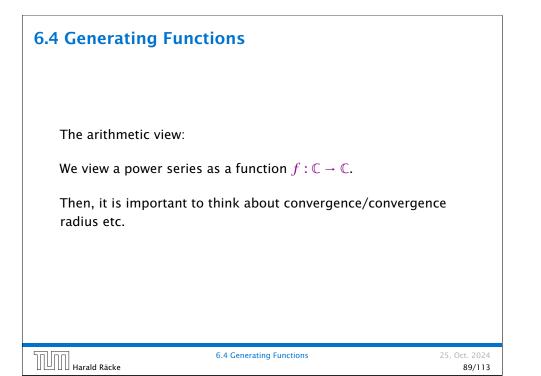
Example 9

1. The generating function of the sequence (1, 0, 0, ...) is

F(z) = 1.

2. The generating function of the sequence $(1, 1, 1, \ldots)$ is

 $F(z)=\frac{1}{1-z}.$



6.4 Generating Functions

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n \ge 0} z^n$ are invers, i.e.,

$$(1-z)\cdot \left(\sum_{n\geq 0}^{\infty}z^{n}\right)=1$$

This is well-defined.

Harald Räcke	6.4 Generating Functions	25. Oct. 2024 90/113

6.4 Generating Functions We can repeat this $\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} .$ Derivative: $\sum_{\substack{n\geq 1\\ \sum_{n\geq 0} (n+1)(n+2)z^n}} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$ Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$. 6.4 Generating Functions

6.4 Generating Functions

Suppose we are given the generating function

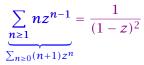
$$\sum_{n\geq 0} z^n = \frac{1}{1-z}$$

Formally the derivative of a formal power series $\sum_{n\geq 0} a_n z^n$ is defined as $\sum_{n\geq 0} n a_n z^{n-1}$.

The known rules for differentiation work for this definition. In particular, e.g. the derivative of $\frac{1}{1-z}$ is $\frac{1}{(1-z)^2}$.

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove this in the lecture.

We can compute the derivative:



Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

החוהר	6.4 Generating Functions	25. Oct. 2024
UUU Harald Räcke		91/113

6.4 Generating Functions

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}} .$$

Hence:

$$\sum_{k\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}} \; .$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

92/113

6.4 Generating Functions

$$\sum_{n \ge 0} nz^n = \sum_{n \ge 0} (n+1)z^n - \sum_{n \ge 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
$$= \frac{z}{(1-z)^2}$$

The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

6.4 Generating Functions

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$
= $z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$
= $zA(z) + \sum_{n \ge 0} z^n$
= $zA(z) + \frac{1}{1-z}$

6.4 Generating Functions 25. Oct. 2024
96/113

6.4 Generating Functions

We know

 $\sum_{n\geq 0} \mathcal{Y}^n = \frac{1}{1-\mathcal{Y}}$

Hence,

25. Oct. 2024

94/113

$$\sum_{n\geq 0}a^nz^n=\frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

6.4 Generating Functions 25. Oct. 2024 Harald Räcke 95/113

Example:
$$a_n = a_{n-1} + 1$$
, $a_0 = 1$
Solving for $A(z)$ gives

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n \ge 0} (n+1) z^n$$
Hence, $a_n = n + 1$.

Some Generating Functions

n-th seque	nce element	generating function	
	1	$\frac{1}{1-z}$	
n	+ 1	$\frac{1}{(1-z)^2}$	
("	$\binom{+k}{k}$	$\frac{1}{(1-z)^{k+1}}$	
	n	$\frac{z}{(1-z)^2}$	
C	ι^n	$\frac{1}{1-az}$	
1	ı ²	$\frac{z(1+z)}{(1-z)^3}$	
	<u>1</u> n!	e ^z	
			1
ld Räcke	6.4 Generation	ng Functions	25. Oct. 20 98/1

Solving Recursions with Generating Functions

- **1.** Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- **4.** Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

Harald Räcke

6.4 Generating Functions

25. Oct. 2024 100/113

Some Generating Functions

n-th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k); 0$ otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)
6.4 Generatii arald Räcke	ng Functions

Example: $a_n = 2a_{n-1}, a_0 = 1$	Example:	a_n	=	$2a_{n-1}$,	a_0	=	1
------------------------------------	----------	-------	---	--------------	-------	---	---

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

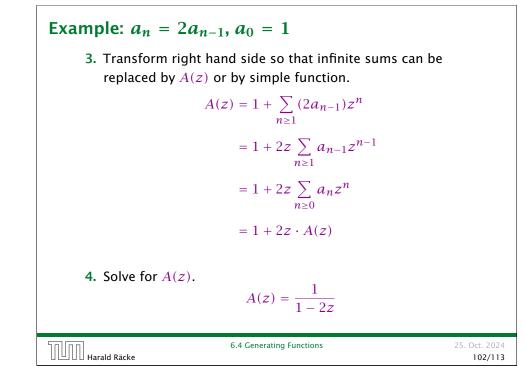
$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

Harald Räcke

6.4 Generating Functions



Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

1. Set up generating function:

 $A(z) = \sum_{n \ge 0} a_n z^n$

6.4.Consisting Europtions	25. Oct. 202
6.4 Generating Functions	25. Uct. 202 104/11

Example: $a_n = 2a_{n-1}, a_0 = 1$

5. Rewrite f(z) as a power series:

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \ge 0} 2^n z^n$$

	$n \ge 0$	$n \ge 0$
50000	6.4 Generating Functions	25. Oct. 2024
Harald Räcke	,	103/113

Example: $a_n = 3a_{n-1} + n$,	$a_0 = 1$
2./3. Transform right hand side:	
$= 1 + 3z \sum_{n \ge 1}^{n \ge 1}$ $= 1 + 3z \sum_{n \ge 1}^{n \ge 1}$	$a_{n}z^{n}$ $Ba_{n-1} + n)z^{n}$ $a_{n-1}z^{n-1} + \sum_{n \ge 1} nz^{n}$ $a_{n}z^{n} + \sum_{n \ge n} nz^{n}$
6.4 Generat	ing Functions 25. Oct. 2024 105/113

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$
4. Solve for $A(z)$:
 $A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$
gives
 $A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

Harald Räcke

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

6.4 Generating Functions

25. Oct. 2024

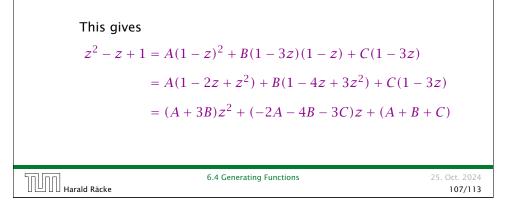
108/113

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$



Example: a_n	$= 3a_{n-1} + n, a_0 = 1$	
5. Write <i>f</i> (<i>z</i>) as a formal power series:	
A(z)	$= \frac{7}{4} \cdot \frac{1}{1-3z} - \frac{1}{4} \cdot \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{(1-z)^2}$	
	$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n - \frac{1}{2})^n - \frac{1}{2} \cdot $	$(i+1)z^n$
	$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n+1) \right) z^n$	
	$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4} \right) z^n$	
6. This mea	ns $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.	
Harald Räcke	6.4 Generating Functions	25. Oct. 2024 109/113

6.5 Transformation of the Recurrence

Example 10 $f_0 = 1$ $f_1 = 2$ $f_n = f_{n-1} \cdot f_{n-2}$ for $n \ge 2$.

Define

 $a := \log f$

Then

$$g_n := \log f_n$$

$$g_n = g_{n-1} + g_{n-2} \text{ for } n \ge 2$$

$$g_1 = \log 2 = 1 (\text{for } \log = \log_2), \ g_0 = 0$$

$$g_n = F_n \ (n\text{-th Fibonacci number})$$

$$f_n = 2^{F_n}$$

6.5 Transformation of the Recurrence 25. Oct. 2024

Harald Räcke

6.5 Transformation of the Recurrence

110/113

6 Recurrences

We get

$$g_{k} = 3 [g_{k-1}] + 2^{k}$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^{k}$$

$$= 3^{2} [g_{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{2} [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^{k}$$

$$= 3^{3}g_{k-3} + 3^{2}2^{k-2} + 32^{k-1} + 2^{k}$$

$$= 2^{k} \cdot \sum_{i=0}^{k} \left(\frac{3}{2}\right)^{i}$$

$$= 2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{1/2} = 3^{k+1} - 2^{k+1}$$

6.5 Transformation of the Recurrence

Example 11

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$, $k \ge 1$;

Define

 $g_k := f_{2^k}$.

Then:

Harald Räcke

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

6.5 Transformation of the Recurrence 25. Oct. 2024 111/113

6 Recurrences		
Let $n = 2^k$:	$g_k = 3^{k+1} - 2^{k+1}, \text{ hence}$ $f_n = 3 \cdot 3^k - 2 \cdot 2^k$ $= 3(2^{\log 3})^k - 2 \cdot 2^k$ $= 3(2^k)^{\log 3} - 2 \cdot 2^k$ $= 3n^{\log 3} - 2n .$	
Harald Räcke	6.5 Transformation of the Recurrence	25. Oct. 2024 113/113

6 Recurrences

Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox, Springer, 2008 [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009 [Liu85] Chung Laung Liu: Elements of Discrete Mathematics McGraw-Hill, 1985 The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10.

