Part III

Data Structures

Abstract Data Type

An abstract data type (ADT) is defined by an interface of operations or methods that can be performed and that have a defined behavior.

The data types in this lecture all operate on objects that are represented by a [key, value] pair.

- ► The key comes from a totally ordered set, and we assume that there is an efficient comparison function.
- The value can be anything; it usually carries satellite information important for the application that uses the ADT.

▶ *S.* search(k): Returns pointer to object x from S with key[x] = k or null.

- ▶ *S.* search(k): Returns pointer to object x from S with key[x] = k or null.
- ▶ S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.

- ▶ *S*. search(k): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- S. delete(x): Given pointer to object x from S, delete x from the set.

- ▶ *S*. search(*k*): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- S. delete(x): Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.

- ▶ *S*. search(k): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- S. delete(x): Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.

- ▶ *S*. search(*k*): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- S. delete(x): Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- ► *S.* successor(*x*): Return pointer to the next larger element in *S* or null if *x* is maximum.

- **S.** search(k): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. kev[x] must not currently exist in the data-structure.
- **S.** delete(x): Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- S. successor(x): Return pointer to the next larger element in S or null if x is maximum.
- S. predecessor(x): Return pointer to the next smaller element in S or null if x is minimum.

▶ *S.* union(S'): Sets $S := S \cup S'$. The set S' is destroyed.

- ▶ *S.* union(S'): Sets $S := S \cup S'$. The set S' is destroyed.
- ▶ S. merge(S'): Sets $S := S \cup S'$. Requires $S \cap S' = \emptyset$.

- ▶ *S.* union(S'): Sets $S := S \cup S'$. The set S' is destroyed.
- ▶ S. merge(S'): Sets $S := S \cup S'$. Requires $S \cap S' = \emptyset$.
- \triangleright S. split(k, S'):

```
S := \{x \in S \mid \text{key}[x] \le k\}, S' := \{x \in S \mid \text{key}[x] > k\}.
```

- ▶ *S.* union(S'): Sets $S := S \cup S'$. The set S' is destroyed.
- ▶ S. merge(S'): Sets $S := S \cup S'$. Requires $S \cap S' = \emptyset$.
- ► S. split(k, S'): $S := \{x \in S \mid \text{key}[x] \le k\}, S' := \{x \in S \mid \text{key}[x] > k\}.$
- ► S. concatenate(S'): $S := S \cup S'$. Requires $\text{key}[S. \text{maximum}()] \le \text{key}[S'. \text{minimum}()]$.

- ▶ *S.* union(S'): Sets $S := S \cup S'$. The set S' is destroyed.
- ▶ S. merge(S'): Sets $S := S \cup S'$. Requires $S \cap S' = \emptyset$.
- ► *S.* split(k, S'): $S := \{x \in S \mid \text{key}[x] \le k\}, S' := \{x \in S \mid \text{key}[x] > k\}.$
- ► *S*. concatenate(S'): $S := S \cup S'$. Requires key[S. maximum()] \leq key[S'. minimum()].
- ► *S.* decrease-key(x, k): Replace key[x] by $k \le key[x]$.

Examples of ADTs

Stack:

- \triangleright S. push(x): Insert an element.
- ▶ *S.* pop(): Return the element from *S* that was inserted most recently; delete it from *S*.
- ► *S.* empty(): Tell if *S* contains any object.

Examples of ADTs

Stack:

- \triangleright S. push(x): Insert an element.
- ▶ *S.* pop(): Return the element from *S* that was inserted most recently; delete it from *S*.
- ► *S.* empty(): Tell if *S* contains any object.

Queue:

- S. enqueue(x): Insert an element.
- S. dequeue(): Return the element that is longest in the structure; delete it from S.
- S. empty(): Tell if S contains any object.

Examples of ADTs

Stack:

- \triangleright S. push(x): Insert an element.
- ▶ *S.* pop(): Return the element from *S* that was inserted most recently; delete it from *S*.
- ▶ *S.* empty(): Tell if *S* contains any object.

Queue:

- S. enqueue(x): Insert an element.
- S. dequeue(): Return the element that is longest in the structure; delete it from S.
- ► *S.* empty(): Tell if *S* contains any object.

Priority-Queue:

- S. insert(x): Insert an element.
- S. delete-min(): Return the element with lowest key-value; delete it from S.

7 Dictionary

Dictionary:

- S. insert(x): Insert an element x.
- **S.** delete(x): Delete the element pointed to by x.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\ker[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

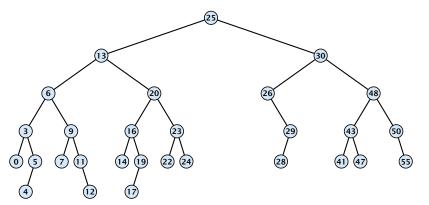
Examples:



7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

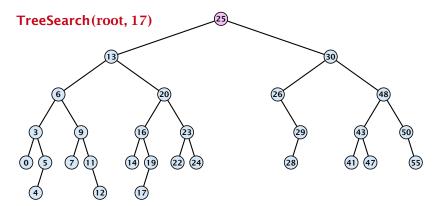
- ightharpoonup T. insert(x)
- ightharpoonup T. delete(x)
- ightharpoonup T. search(k)
- ightharpoonup T. successor(x)
- ightharpoonup T. predecessor(x)
- ightharpoonup T. minimum()
- ightharpoonup T. maximum()



Algorithm 1 TreeSearch(x, k)

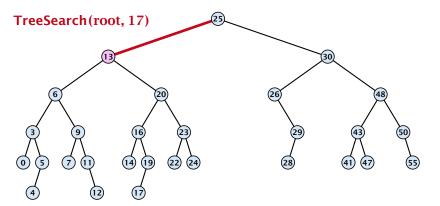
1: if x = null or k = key[x] return x

2: **if** k < key[x] **return** TreeSearch(left[x], k)



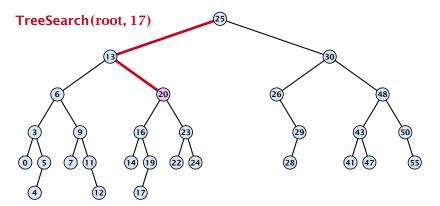
Algorithm 1 TreeSearch(x, k)

- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



Algorithm 1 TreeSearch(x, k)

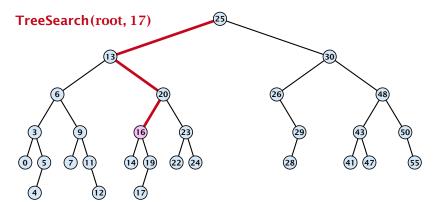
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



Algorithm 1 TreeSearch(x, k)

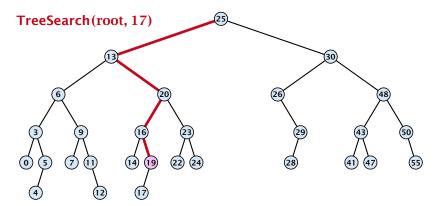
1: **if** x = null or k = key[x] **return** x

2: **if** k < key[x] **return** TreeSearch(left[x], k)



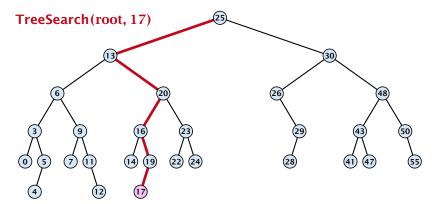
Algorithm 1 TreeSearch(x, k)

- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



Algorithm 1 TreeSearch(x, k)

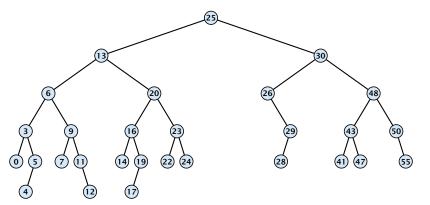
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

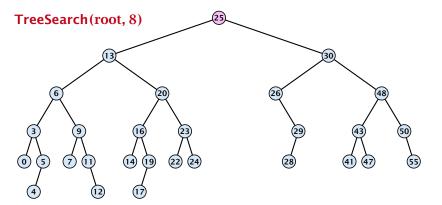
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x

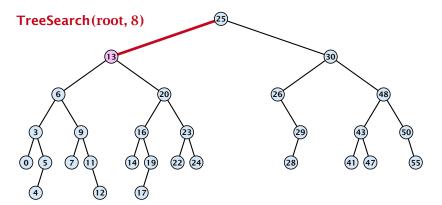
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

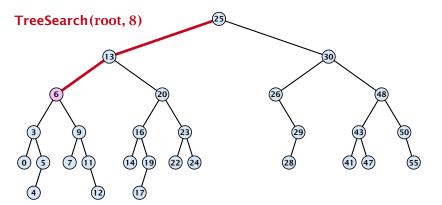
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

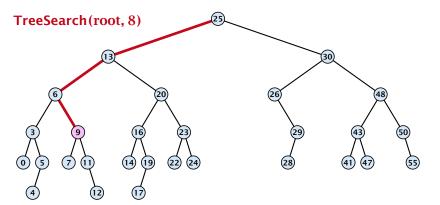
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

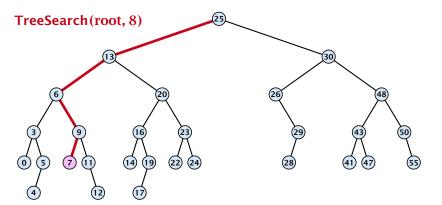
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

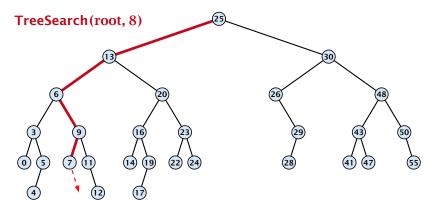
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

2: **if** k < key[x] **return** TreeSearch(left[x], k)

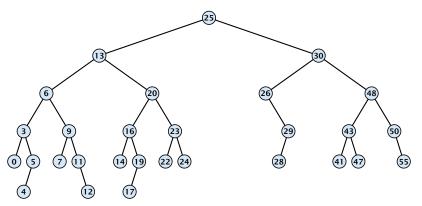


Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

2: **if** k < key[x] **return** TreeSearch(left[x], k)

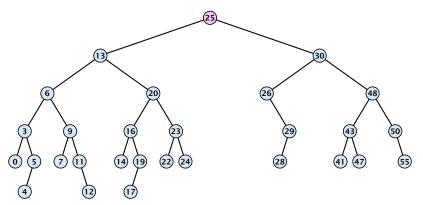
Binary Search Trees: Minimum



Algorithm 2 TreeMin(x)

- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

Binary Search Trees: Minimum

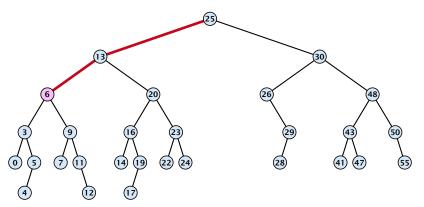


Algorithm 2 TreeMin(x)

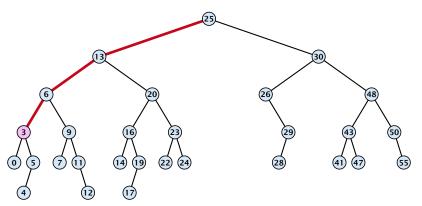
- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])



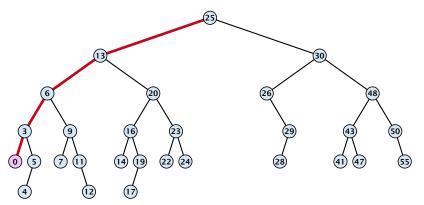
- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])



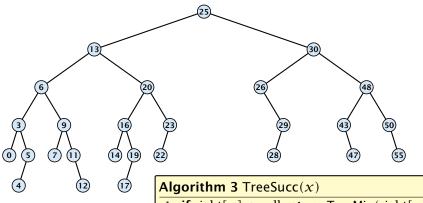
- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])



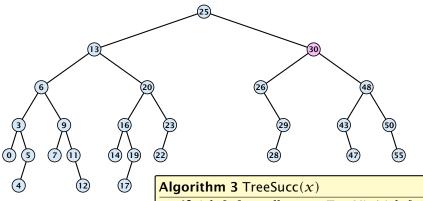
- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])



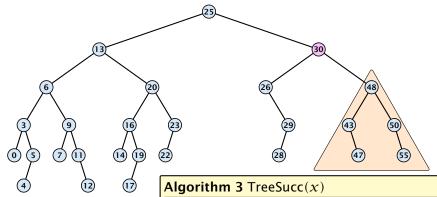
- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])



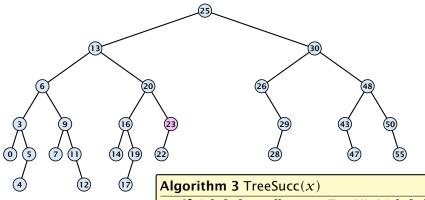
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



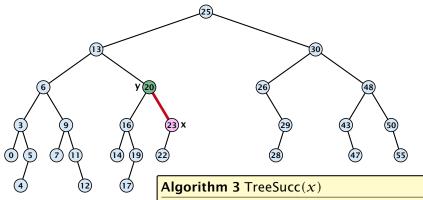
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



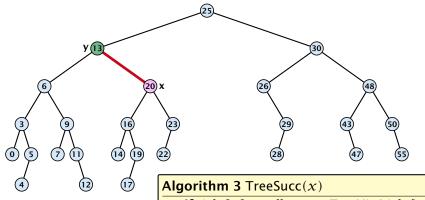
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow parent[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: return y;



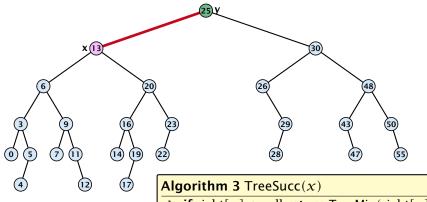
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



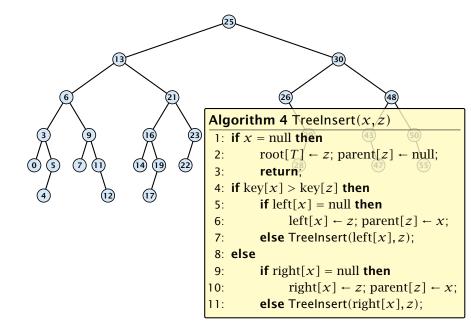
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



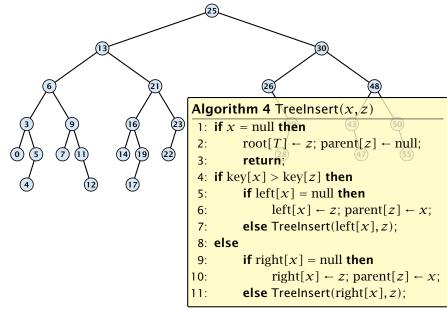
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



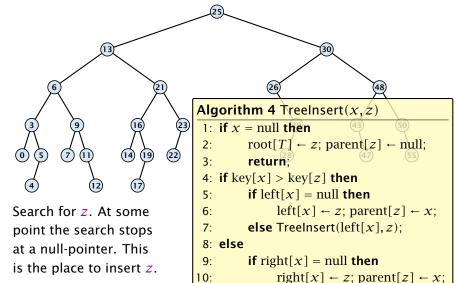
- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



Insert element **not** in the tree.



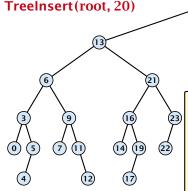
Insert element not in the tree.



11:

else Treelnsert(right[x], z);

Insert element not in the tree.



Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

1: **if** x = null then2: $\text{root}[T] \leftarrow z$; parent $[z] \leftarrow \text{null}$;

: return

4: **if** key[x] > key[z] **then**

5: **if** left[x] = null **then**

6: $\operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;

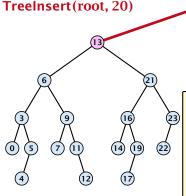
7: **else** Treelnsert(left[x], z);

8: else

9: **if** right[x] = null **then**

10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 11: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{right}[x], z)$;

Insert element not in the tree.



Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

1: if x = null then

root[T] $\leftarrow z$; parent[z] \leftarrow null; return:

4: **if** key[x] > key[z] **then**

5: **if** left[x] = null **then**

6: $\operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;

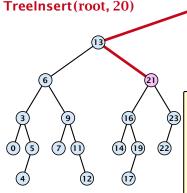
7: **else** Treelnsert(left[x], z);

8: else 9: if right[x] = null then

10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;

11: **else** TreeInsert(right[x], z);

Insert element not in the tree.

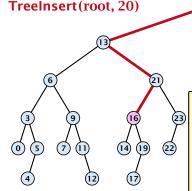


Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

- 1: if x = null then2: $\text{root}[T] \leftarrow z$; parent $[z] \leftarrow \text{null}$;
 - 3: return
- 4: **if** key[x] > key[z] **then**
- 5: **if** left[x] = null **then**
- 5. If $\operatorname{lert}[X] = \operatorname{Hull} \operatorname{trien}$
- 6: $\operatorname{left}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 7: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{left}[x], z)$;
- 8: **else**
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;
- 11: **else** Treelnsert(right[x], z);

Insert element not in the tree.

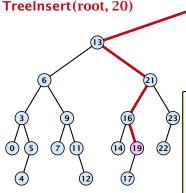


Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

- 1: if x = null then
 - 2: $root[T] \leftarrow z$; parent[z] \leftarrow null; 3: return;
- 4: **if** key[x] > key[z] **then**
- 5: **if** left[x] = null **then**
- 6: $\operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;
- 7: **else** Treelnsert(left[x], z);
- 8: else
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 11: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{right}[x], z)$;

Insert element not in the tree.

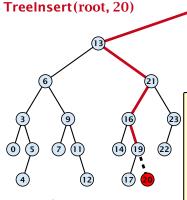


Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

- 1: if x = null then
 - root[T] $\leftarrow z$; parent[z] \leftarrow null; return:
- 4: **if** key[x] > key[z] **then**
- 5: **if** left[x] = null **then**
- 6: $\operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;
- 7: **else** Treelnsert(left[x], z);
- 8: else
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;
- 11: **else** Treelnsert(right[x], z);

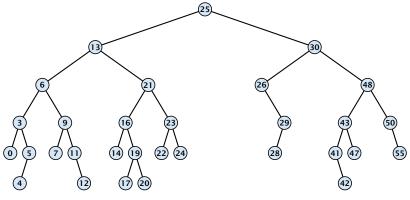
Insert element **not** in the tree.

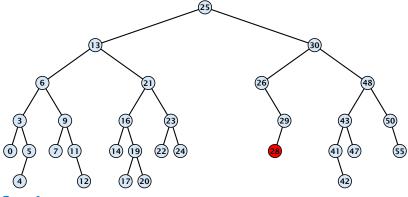


Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x, z)

- 1: **if** x = null then
 - 2: $root[T] \leftarrow z$; parent[z] \leftarrow null; return; (55)
- 4: **if** key[x] > key[z] **then**
- 5: **if** left[x] = null **then**
 - 5. If $\operatorname{lert}[X] = \operatorname{Hull} \operatorname{then}$
- 6: $\operatorname{left}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 7: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{left}[x], z)$;
- 8: **else**
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;
- 11: **else** TreeInsert(right[x], z);

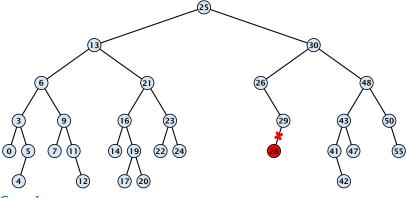




Case 1:

Element does not have any children

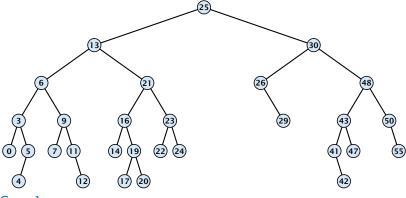
Simply go to the parent and set the corresponding pointer to null.



Case 1:

Element does not have any children

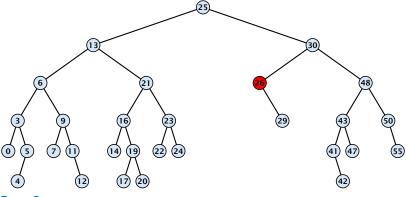
Simply go to the parent and set the corresponding pointer to null.



Case 1:

Element does not have any children

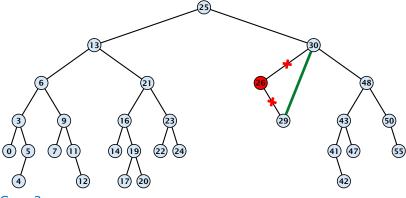
Simply go to the parent and set the corresponding pointer to null.



Case 2:

Element has exactly one child

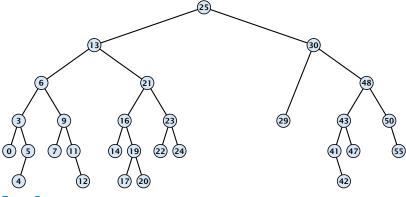
Splice the element out of the tree by connecting its parent to its successor.



Case 2:

Element has exactly one child

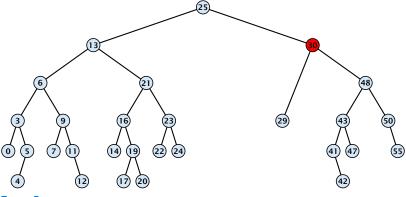
Splice the element out of the tree by connecting its parent to its successor.



Case 2:

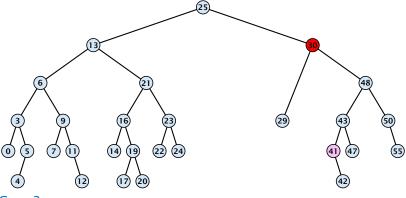
Element has exactly one child

Splice the element out of the tree by connecting its parent to its successor.



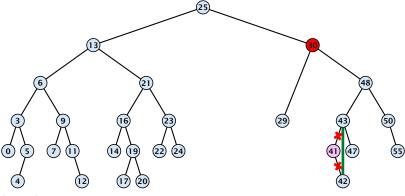
Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



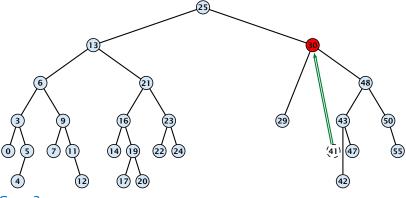
Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



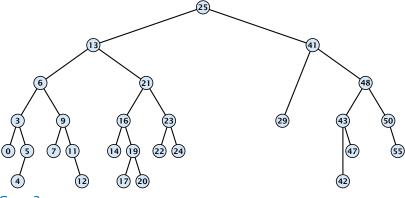
Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



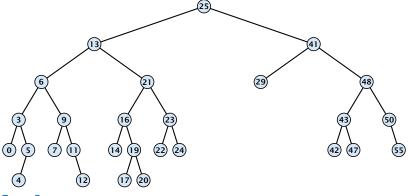
Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

```
Algorithm 9 TreeDelete(z)
 1: if left[z] = null or right[z] = null
          then \gamma \leftarrow z else \gamma \leftarrow \text{TreeSucc}(z); select \gamma to splice out
 3: if left[\gamma] \neq null
         then x \leftarrow \text{left}[y] else x \leftarrow \text{right}[y]; x is child of y (or null)
 5: if x \neq \text{null then parent}[x] \leftarrow \text{parent}[y]; parent[x] is correct
 6: if parent[\gamma] = null then
 7: root[T] \leftarrow x
 8: else
 9: if \gamma = \text{left[parent}[\gamma]] then
                                                                  fix pointer to x
10:
                left[parent[v]] \leftarrow x
    else
11:
12.
        right[parent[y]] \leftarrow x
13: if y \neq z then copy y-data to z
```

Balanced Binary Search Trees

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.

Definition 12

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.

Definition 12

- 1. The root is black.
- 2. All leaf nodes are black.

Definition 12

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.

Definition 12

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

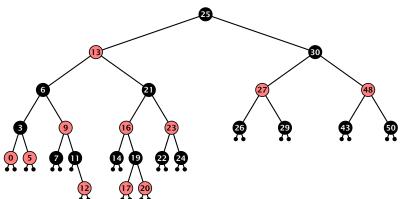
Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example



Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 14

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 14

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 15

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)}-1$ internal vertices.

Proof of Lemma 15.

Proof of Lemma 15.

Induction on the height of v.

Proof of Lemma 15.

Induction on the height of v.

base case (height(v) = 0)

If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.

Proof of Lemma 15.

Induction on the height of v.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.

Proof of Lemma 15.

Induction on the height of v.

base case (height(v) = 0)

- ▶ If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.
- ► The sub-tree rooted at v contains $0 = 2^{bh(v)} 1$ inner vertices.

Proof (cont.)

Proof (cont.)

induction step

Supose v is a node with height(v) > 0.

Proof (cont.)

- ▶ Supose v is a node with height(v) > 0.
- $\triangleright v$ has two children with strictly smaller height.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- ightharpoonup v has two children with strictly smaller height.
- ► These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- ightharpoonup v has two children with strictly smaller height.
- ► These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- **By** induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- lacktriangledown v has two children with strictly smaller height.
- ► These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- **By** induction hypothesis both sub-trees contain at least $2^{\text{bh}(v)-1}-1$ internal vertices.
- ► Then T_v contains at least $2(2^{\text{bh}(v)-1}-1)+1 \ge 2^{\text{bh}(v)}-1$ vertices.

Proof of Lemma 13.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \le 2\log(n+1) = \mathcal{O}(\log n)$.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

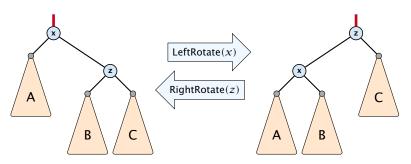
- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

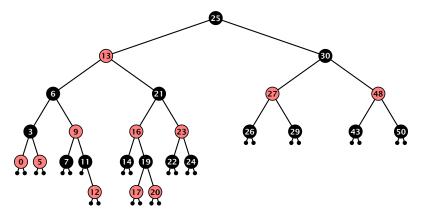
We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:



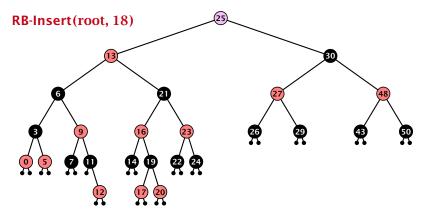
Red Black Trees: Insert



Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

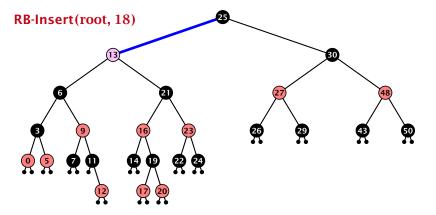
Red Black Trees: Insert



Insert:

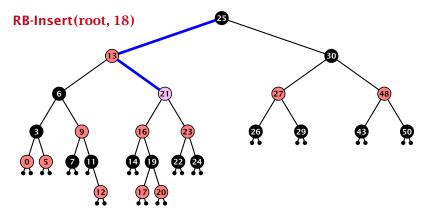
- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

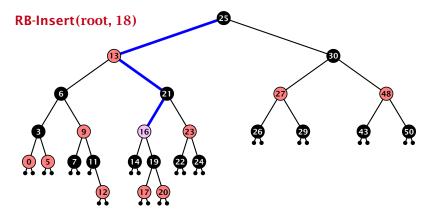


Insert:

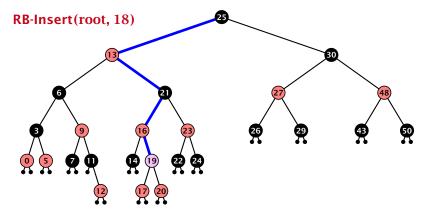
- first make a normal insert into a binary search tree
- then fix red-black properties



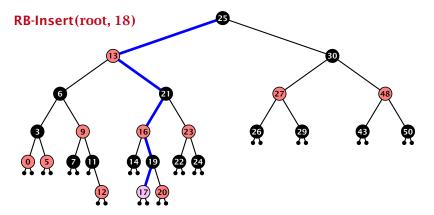
- first make a normal insert into a binary search tree
- then fix red-black properties



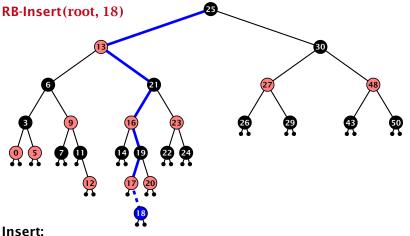
- first make a normal insert into a binary search tree
- then fix red-black properties



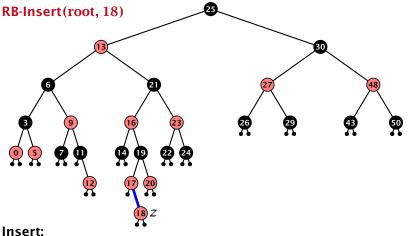
- first make a normal insert into a binary search tree
- then fix red-black properties



- first make a normal insert into a binary search tree
- then fix red-black properties



- first make a normal insert into a binary search tree
- then fix red-black properties



- first make a normal insert into a binary search tree
- then fix red-black properties

Invariant of the fix-up algorithm:

z is a red node

- z is a red node
- the black-height property is fulfilled at every node

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
         if parent[z] = left[gp[z]] then
 2:
 3:
              uncle \leftarrow right[grandparent[z]]
             if col[uncle] = red then
 4:
                  col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                  col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
 7:
             else
                  if z = right[parent[z]] then
 8:
                       z \leftarrow p[z]; LeftRotate(z);
 9:
                  col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
11:
                  RightRotate(gp[z]);
12:
         else same as then-clause but right and left exchanged
13: col(root[T]) \leftarrow black;
```

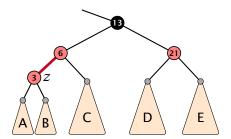
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
         if parent[z] = left[gp[z]] then z in left subtree of grandparent
 2:
 3:
               uncle \leftarrow right[grandparent[z]]
               if col[uncle] = red then
 4:
                    col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                    col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
 7:
              else
                    if z = right[parent[z]] then
 8:
                        z \leftarrow p[z]; LeftRotate(z);
 9:
                    col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
11:
                    RightRotate(gp[z]);
12:
         else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```

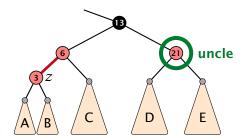
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
         if parent[z] = left[gp[z]] then
 2:
 3:
              uncle \leftarrow right[grandparent[z]]
             if col[uncle] = red then
 4:
                                                            Case 1: uncle red
                  col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                  col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
             else
 7:
                  if z = right[parent[z]] then
 8:
                       z \leftarrow p[z]; LeftRotate(z);
 9:
                  col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                  RightRotate(gp[z]);
11:
12:
         else same as then-clause but right and left exchanged
13: col(root[T]) \leftarrow black;
```

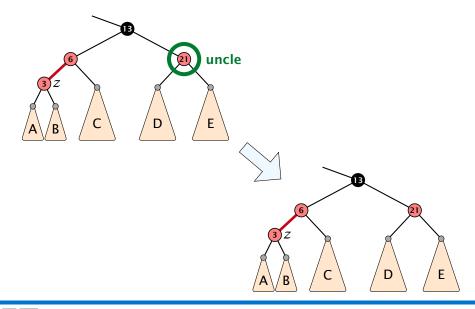
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
         if parent[z] = left[gp[z]] then
 2:
 3:
               uncle \leftarrow right[grandparent[z]]
               if col[uncle] = red then
 4:
                    col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                    col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
 7:
               else
                                                               Case 2: uncle black
                    if z = right[parent[z]] then
 8:
                         z \leftarrow p[z]; LeftRotate(z);
 9:
                    col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
11:
                    RightRotate(gp[z]);
12:
         else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```

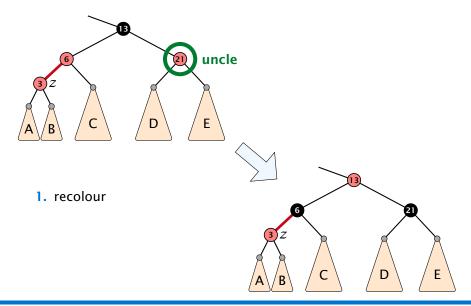
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
         if parent[z] = left[gp[z]] then
 2:
 3:
              uncle \leftarrow right[grandparent[z]]
              if col[uncle] = red then
 4:
                  col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                  col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
              else
 7:
                  if z = right[parent[z]] then
 8:
                                                              2a: z right child
                       z \leftarrow p[z]; LeftRotate(z);
 9:
                  col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                  RightRotate(gp[z]);
11:
12:
         else same as then-clause but right and left exchanged
13: col(root[T]) \leftarrow black;
```

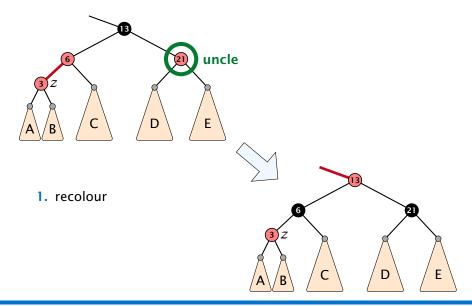
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
         if parent[z] = left[gp[z]] then
 2:
 3:
              uncle \leftarrow right[grandparent[z]]
              if col[uncle] = red then
 4:
                  col[p[z]] \leftarrow black; col[u] \leftarrow black;
 5:
                  col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
             else
 7:
                  if z = right[parent[z]] then
 8:
                       z \leftarrow p[z]; LeftRotate(z);
 9:
10:
                  col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child
                  RightRotate(gp[z]);
11:
12:
         else same as then-clause but right and left exchanged
13: col(root[T]) \leftarrow black;
```

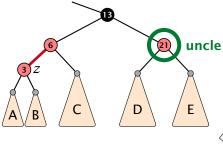




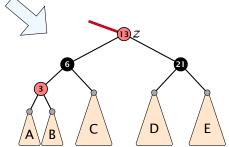


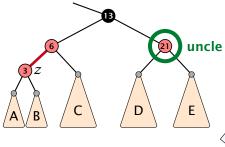




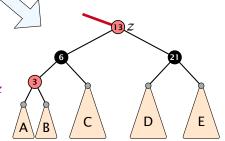


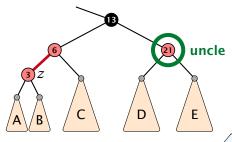
- 1. recolour
- 2. move z to grand-parent



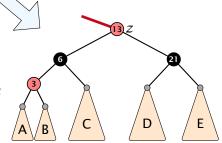


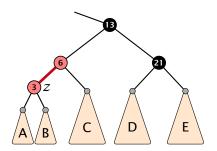
- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z

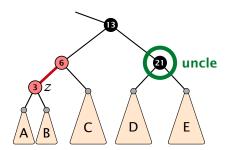




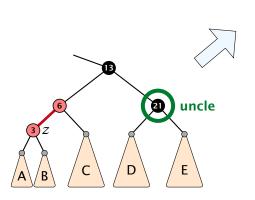
- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- 4. you made progress

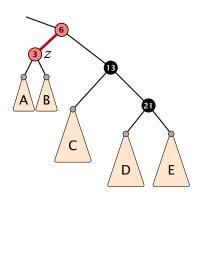




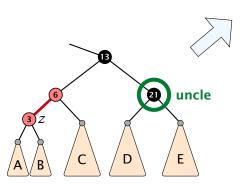


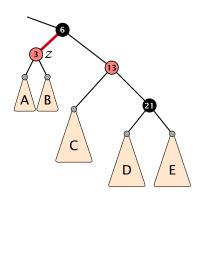
1. rotate around grandparent



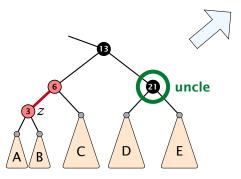


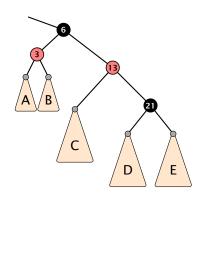
- 1. rotate around grandparent
- re-colour to ensure that black height property holds

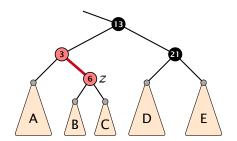


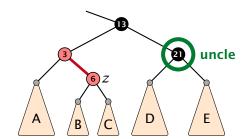


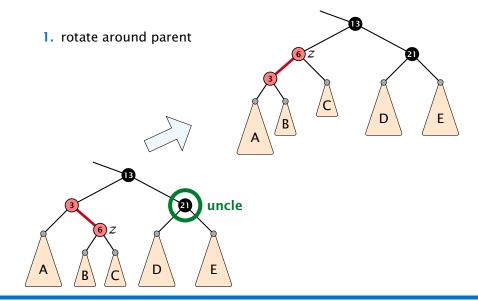
- 1. rotate around grandparent
- re-colour to ensure that black height property holds
- 3. you have a red black tree



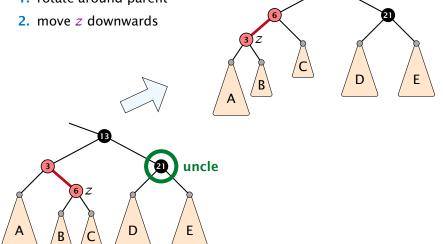




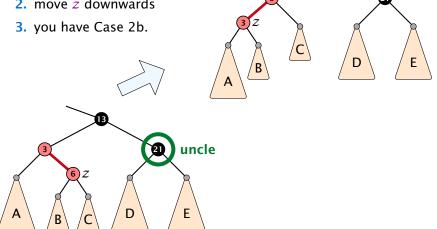




1. rotate around parent



- 1. rotate around parent
- 2. move z downwards



Running time:

▶ Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.

Running time:

- ▶ Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Running time:

- ▶ Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Performing Case 1 at most $\mathcal{O}(\log n)$ times and every other case at most once, we get a red-black tree. Hence $\mathcal{O}(\log n)$ re-colorings and at most 2 rotations.

First do a standard delete.

First do a standard delete.

If the spliced out node \boldsymbol{x} was red everything is fine.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

Parent and child of x were red; two adjacent red vertices.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

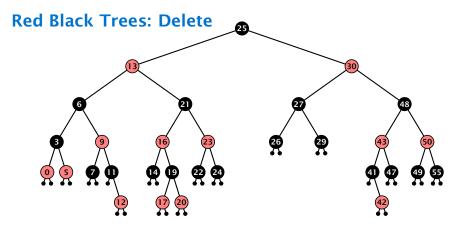
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.

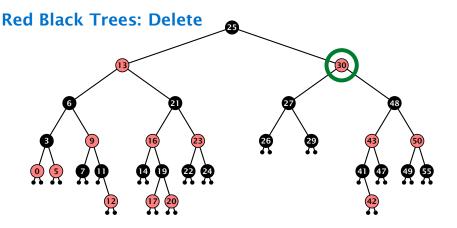
First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

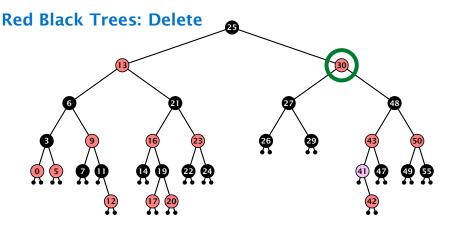
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.





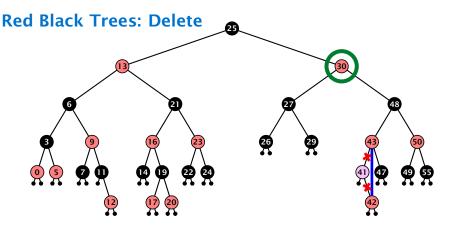
Case 3:

- do normal delete
- when replacing content by content of successor, don't change color of node



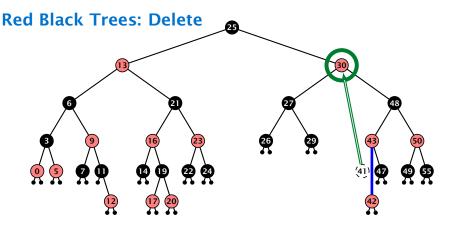
Case 3:

- do normal delete
- when replacing content by content of successor, don't change color of node



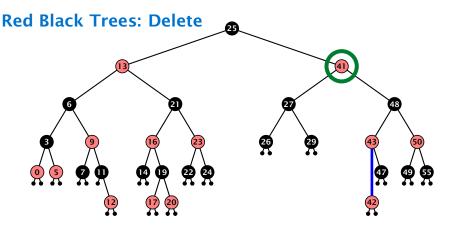
Case 3:

- do normal delete
- when replacing content by content of successor, don't change color of node



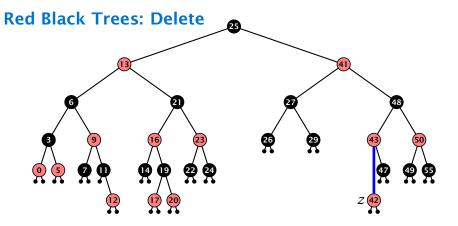
Case 3:

- do normal delete
- when replacing content by content of successor, don't change color of node



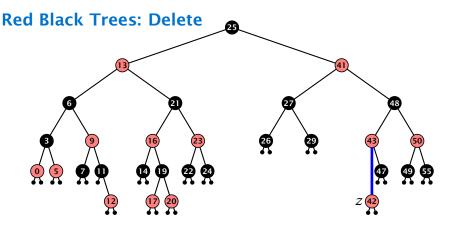
Case 3:

- do normal delete
- when replacing content by content of successor, don't change color of node



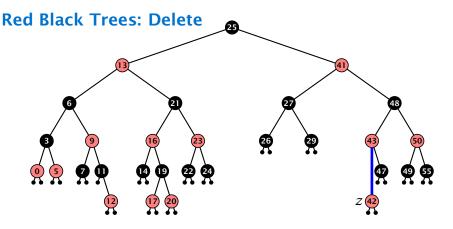
Delete:

deleting black node messes up black-height property



Delete:

- deleting black node messes up black-height property
- ▶ if z is red, we can simply color it black and everything is fine



Delete:

- deleting black node messes up black-height property
- ightharpoonup if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Invariant of the fix-up algorithm

► the node z is black

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

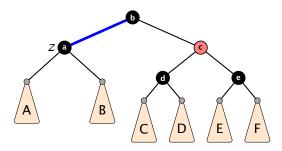
7.2 Red Black Trees

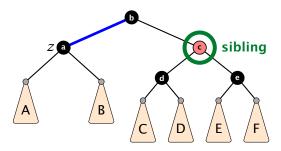
158/415

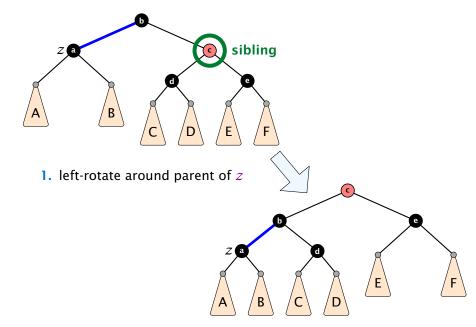
Invariant of the fix-up algorithm

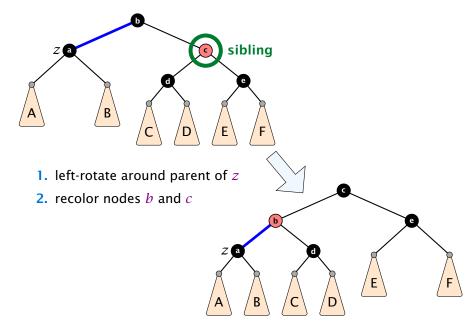
- ▶ the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

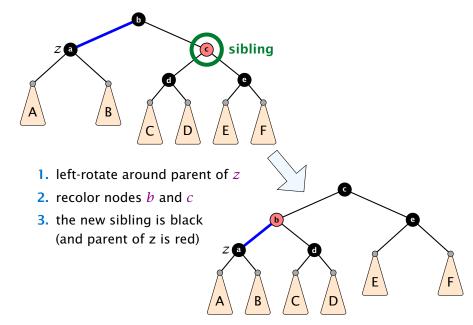
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

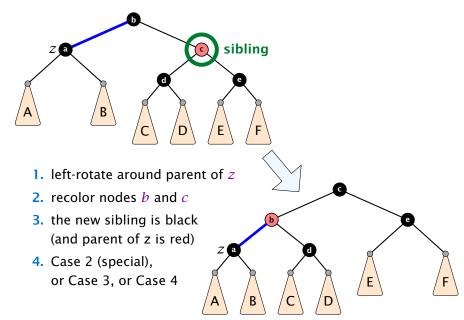


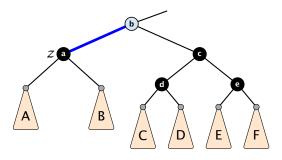


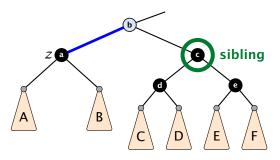


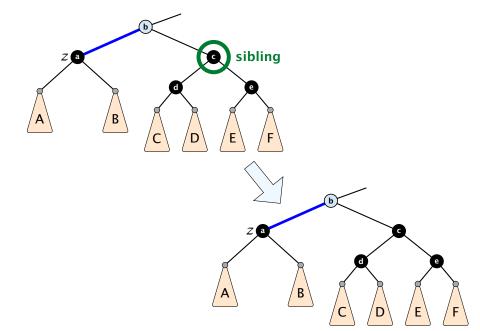


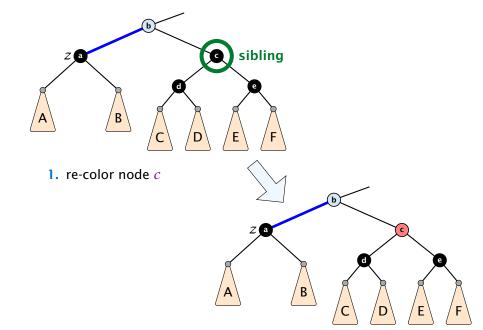


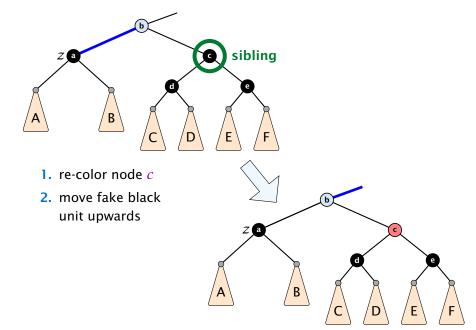


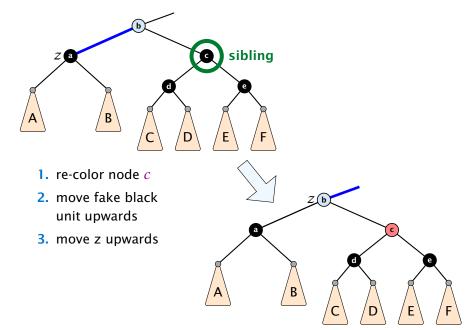


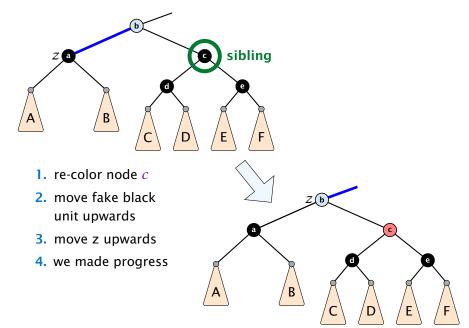




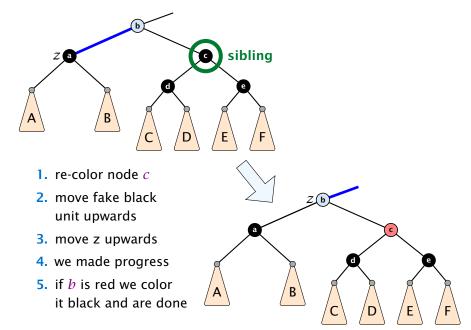


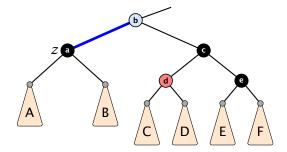


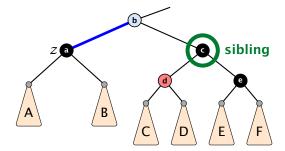


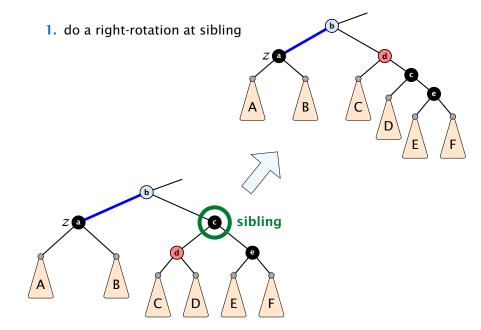


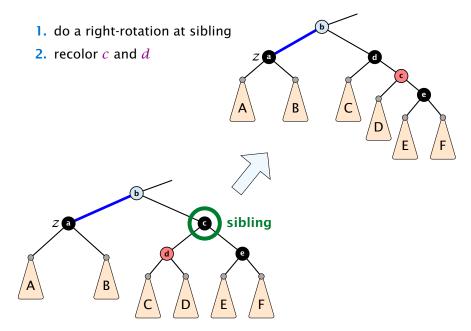
Case 2: Sibling is black with two black children

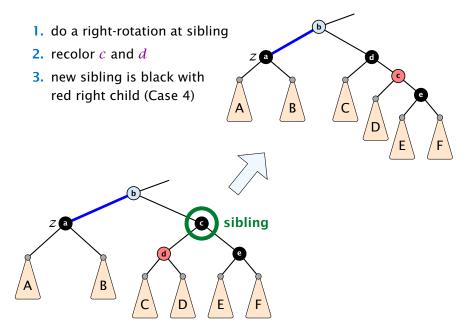


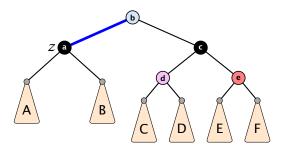


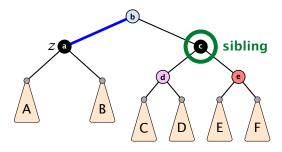


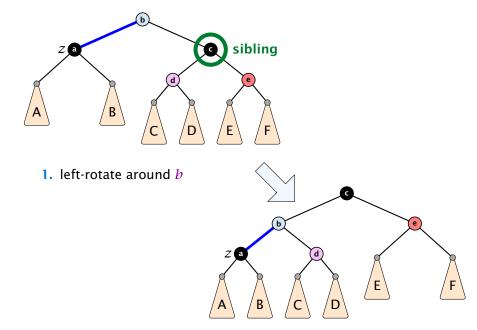


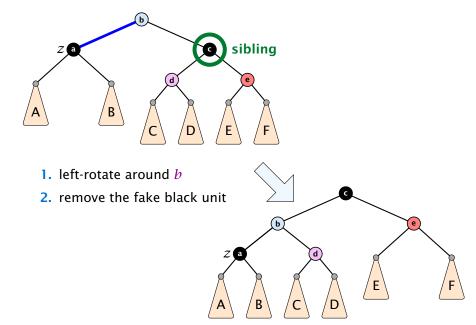


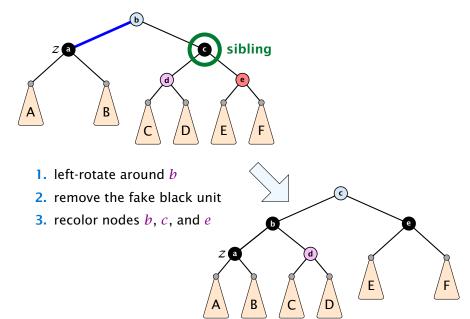


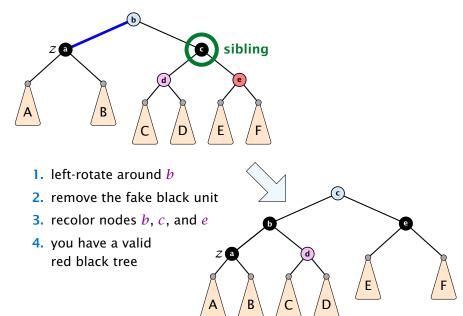












only Case 2 can repeat; but only h many steps, where h is the height of the tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

Performing Case 2 at most $\mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $\mathcal{O}(\log n)$ re-colorings and at most 3 rotations.

Disadvantage of balanced search trees:

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x) repeated accesses are faster

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

- + after access, an element is moved to the root; splay(x) repeated accesses are faster
- only amortized guarantee

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

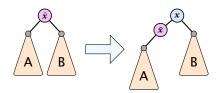
- + after access, an element is moved to the root; splay(x) repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

find(x)

- search for x according to a search tree
- let \bar{x} be last element on search-path
- $splay(\bar{x})$

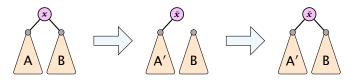
insert(x)

- search for x; \bar{x} is last visited element during search (successer or predecessor of x)
- splay(\bar{x}) moves \bar{x} to the root
- insert x as new root

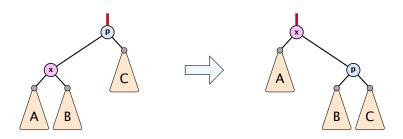


delete(x)

- search for x; splay(x); remove x
- **>** search largest element \bar{x} in A
- splay(\bar{x}) (on subtree A)
- connect root of B as right child of \bar{x}



Move to Root



How to bring element to root?

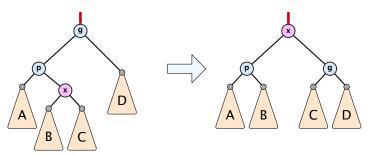
- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- if x is left child do right rotation otw. left rotation

Splay: Zig Case

better option splay(x):

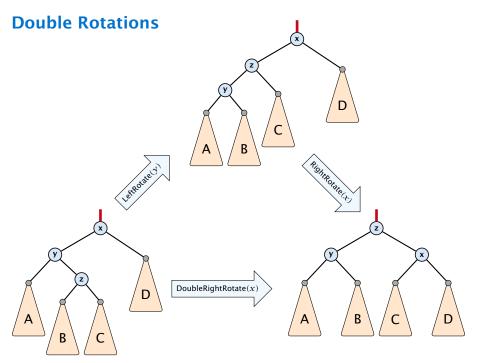
zig case: if x is child of root do left rotation or right rotation around parent

Splay: Zigzag Case

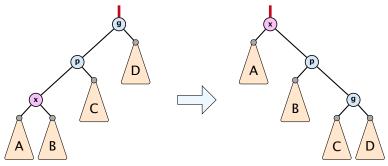


better option splay(x):

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left rotation)



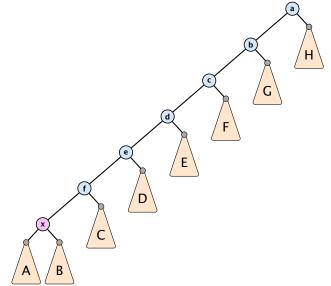
Splay: Zigzig Case



better option splay(x):

- zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)
- do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

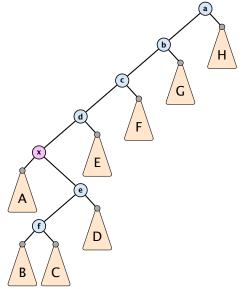
Splay vs. Move to Root

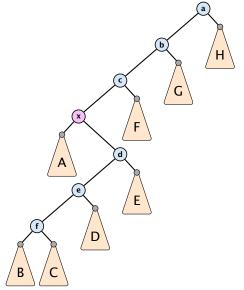


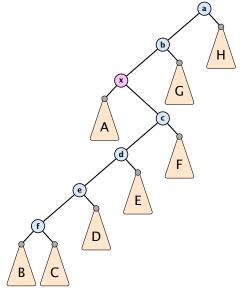
Splay vs. Move to Root

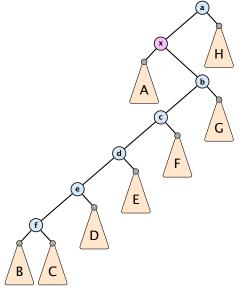


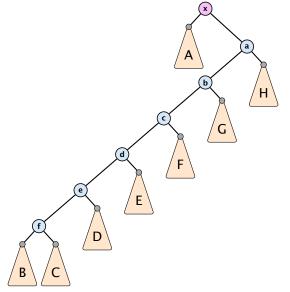
Splay vs. Move to Root

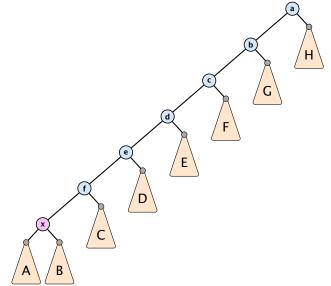


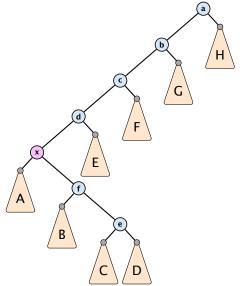


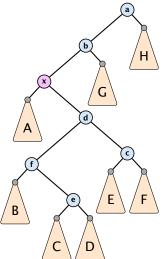


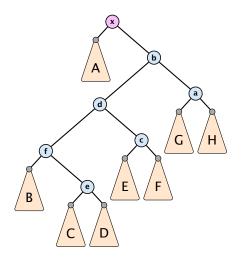












Static Optimality

Suppose we have a sequence of m find-operations. find(x) appears h_x times in this sequence.

The cost of a static search tree *T* is:

$$cost(T) = m + \sum_{x} h_{x} \operatorname{depth}_{T}(x)$$

The total cost for processing the sequence on a splay-tree is $\mathcal{O}(\cos t(T_{\min}))$, where T_{\min} is an optimal static search tree.

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

- the cost for accessing element x is 1 + depth(x);
- after accessing x the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from S has cost $\mathcal{O}(\cos t(A,S))$, for processing S.

Lemma 16

Splay Trees have an amortized running time of $O(\log n)$ for all operations.

Amortized Analysis

Definition 17

A data structure with operations $op_1(), \ldots, op_k()$ has amortized running times t_1, \ldots, t_k for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_i denote the number of occurences of $\operatorname{op}_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i \cdot t_i(n)$.

Introduce a potential for the data structure.

Introduce a potential for the data structure.

lacktriangle $\Phi(D_i)$ is the potential after the *i*-th operation.

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- ightharpoonup Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) .$$

► Show that $\Phi(D_i) \ge \Phi(D_0)$.

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- ightharpoonup Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) .$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^k c_i$$

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0)$$

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- ightharpoonup Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ .$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Stack

- ► *S.* push()
- **►** *S.* pop()
- ► *S.* multipop(*k*): removes *k* items from the stack. If the stack currently contains less than *k* items it empties the stack.
- ► The user has to ensure that pop and multipop do not generate an underflow.

Stack

- ► *S.* push()
- ► S. pop()
- ► *S.* multipop(*k*): removes *k* items from the stack. If the stack currently contains less than *k* items it empties the stack.
- ► The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- ► *S.* push(): cost 1.
- ▶ *S.* pop(): cost 1.
- *S.* multipop(k): cost min{size, k} = k.

Use potential function $\Phi(S) = \text{number of elements on the stack.}$

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

► S. push(): cost

$$\hat{C}_{\mathrm{push}} = C_{\mathrm{push}} + \Delta \Phi = 1 + 1 \leq 2 \ .$$

Use potential function $\Phi(S) = \text{number of elements on the stack.}$

Amortized cost:

► *S.* push(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2$$
.

► *S.* **pop()**: cost

$$\hat{C}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 \le 0 .$$

Use potential function $\Phi(S) = \text{number of elements on the stack.}$

Amortized cost:

► *S.* **push**(): cost

$$\hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 2 \ .$$

► **S. pop()**: cost

$$\hat{C}_{\mathrm{pop}} = C_{\mathrm{pop}} + \Delta \Phi = 1 - 1 \leq 0 \ .$$

 \triangleright S. multipop(k): cost

$$\hat{C}_{mn} = C_{mn} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$$
.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- ► Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- ▶ Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 .$$

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 .$$

► Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0 \ .$$

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1:

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 .$$

► Changing bit from 1 to 0:

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0$$
.

▶ Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k (1 \rightarrow 0)-operations, and one (0 \rightarrow 1)-operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \leq 2$.

Splay Trees

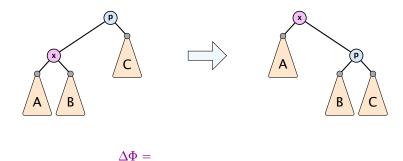
potential function for splay trees:

- ightharpoonup size $s(x) = |T_x|$
- $rank r(x) = \log_2(s(x))$

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

Splay: Zig Case



Splay: Zig Case

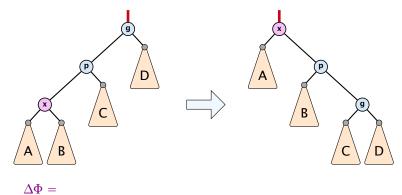
$$\Delta\Phi=r'(x)+r'(p)-r(x)-r(p)$$

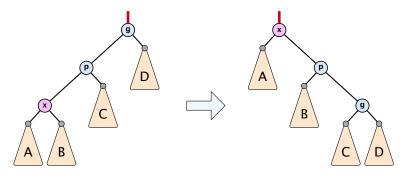
$$\Delta\Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$

$$\Delta\Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$
$$\leq r'(x) - r(x)$$

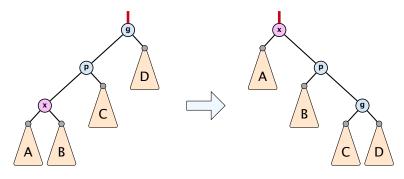
$$\Delta\Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$
$$\leq r'(x) - r(x)$$

$$cost_{ziq} \le 1 + 3(r'(x) - r(x))$$



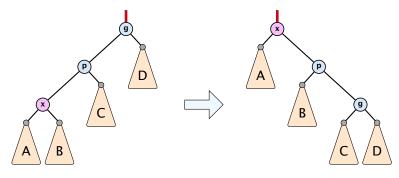


$$\Delta\Phi=r'(x)+r'(p)+r'(g)-r(x)-r(p)-r(g)$$



$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

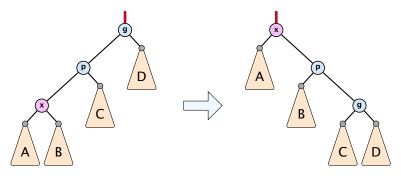
= $r'(p) + r'(g) - r(x) - r(p)$



$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(x) + r'(g) - r(x) - r(x)$$

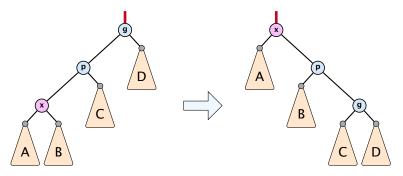


$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

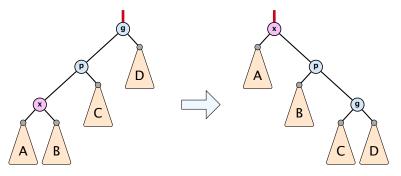
$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(x) + r'(g) - r(x) - r(x)$$

$$= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x)$$



$$\begin{split} \Delta \Phi &= r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g) \\ &= r'(p) + r'(g) - r(x) - r(p) \\ &\leq r'(x) + r'(g) - r(x) - r(x) \\ &= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x) \\ &= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x)) \end{split}$$



$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

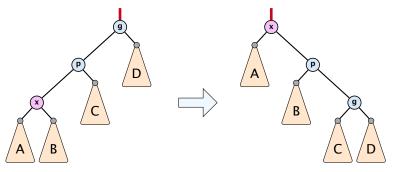
$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(x) + r'(g) - r(x) - r(x)$$

$$= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x)$$

$$= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x))$$

$$\leq -2 + 3(r'(x) - r(x))$$



$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

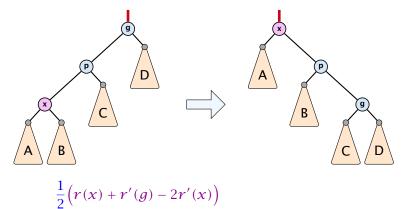
$$= r'(p) + r'(g) - r(x) - r(p)$$

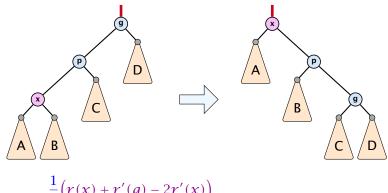
$$\leq r'(x) + r'(g) - r(x) - r(x)$$

$$= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x)$$

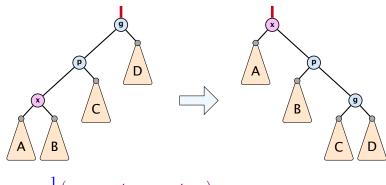
$$= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x))$$

$$\leq -2 + 3(r'(x) - r(x)) \Rightarrow \cos t_{zigzig} \leq 3(r'(x) - r(x))$$





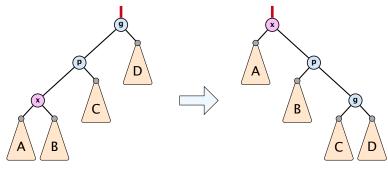
$$\frac{1}{2} \Big(r(x) + r'(g) - 2r'(x) \Big) \\
= \frac{1}{2} \Big(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \Big)$$



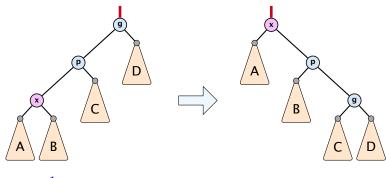
$$\frac{1}{2} \left(r(x) + r'(g) - 2r'(x) \right)$$

$$= \frac{1}{2} \left(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \right)$$

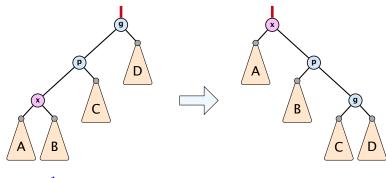
$$= \frac{1}{2} \log \left(\frac{s(x)}{s'(x)} \right) + \frac{1}{2} \log \left(\frac{s'(g)}{s'(x)} \right)$$



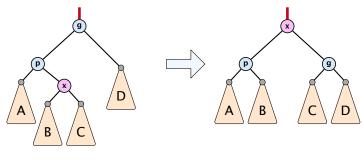
$$\begin{split} &\frac{1}{2}\Big(r(x) + r'(g) - 2r'(x)\Big) \\ &= \frac{1}{2}\Big(\log(s(x)) + \log(s'(g)) - 2\log(s'(x))\Big) \\ &= \frac{1}{2}\log\Big(\frac{s(x)}{s'(x)}\Big) + \frac{1}{2}\log\Big(\frac{s'(g)}{s'(x)}\Big) \\ &\leq \log\Big(\frac{1}{2}\frac{s(x)}{s'(x)} + \frac{1}{2}\frac{s'(g)}{s'(x)}\Big) \end{split}$$



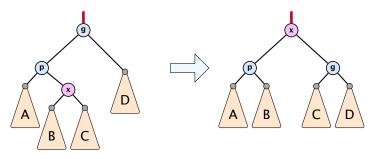
$$\begin{split} &\frac{1}{2}\Big(r(x)+r'(g)-2r'(x)\Big)\\ &=\frac{1}{2}\Big(\log(s(x))+\log(s'(g))-2\log(s'(x))\Big)\\ &=\frac{1}{2}\log\Big(\frac{s(x)}{s'(x)}\Big)+\frac{1}{2}\log\Big(\frac{s'(g)}{s'(x)}\Big)\\ &\leq\log\Big(\frac{1}{2}\frac{s(x)}{s'(x)}+\frac{1}{2}\frac{s'(g)}{s'(x)}\Big)\leq\log\Big(\frac{1}{2}\Big) \end{split}$$



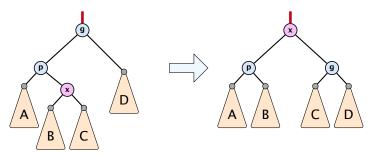
$$\begin{split} \frac{1}{2} \Big(r(x) + r'(g) - 2r'(x) \Big) \\ &= \frac{1}{2} \Big(\log(s(x)) + \log(s'(g)) - 2\log(s'(x)) \Big) \\ &= \frac{1}{2} \log \Big(\frac{s(x)}{s'(x)} \Big) + \frac{1}{2} \log \Big(\frac{s'(g)}{s'(x)} \Big) \\ &\leq \log \Big(\frac{1}{2} \frac{s(x)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \Big) \leq \log \Big(\frac{1}{2} \Big) = -1 \end{split}$$



 $\Delta\Phi =$

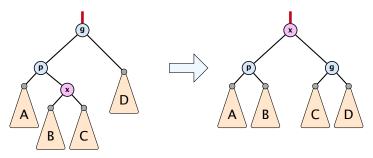


$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$



$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

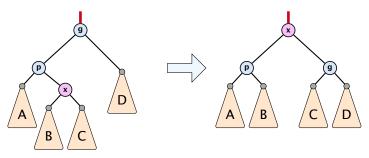
= $r'(p) + r'(g) - r(x) - r(p)$



$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(p) + r'(g) - r(x) - r(x)$$

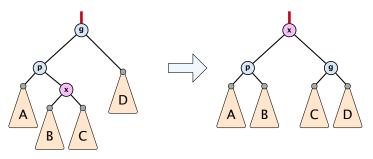


$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(p) + r'(g) - r(x) - r(x)$$

$$= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x)$$



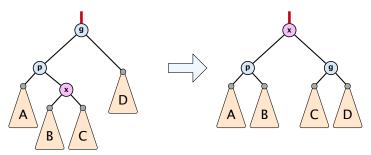
$$\Delta\Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(p) + r'(g) - r(x) - r(x)$$

$$= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x)$$

$$\leq -2 + 2(r'(x) - r(x))$$



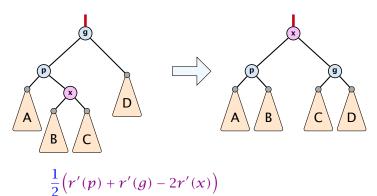
$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

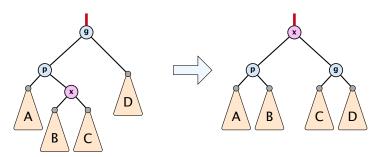
$$= r'(p) + r'(g) - r(x) - r(p)$$

$$\leq r'(p) + r'(g) - r(x) - r(x)$$

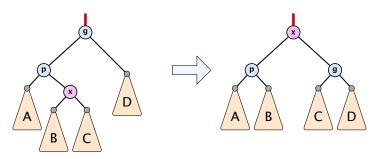
$$= r'(p) + r'(g) - 2r'(x) + 2r'(x) - 2r(x)$$

$$\leq -2 + 2(r'(x) - r(x)) \Rightarrow cost_{zigzag} \leq 3(r'(x) - r(x))$$

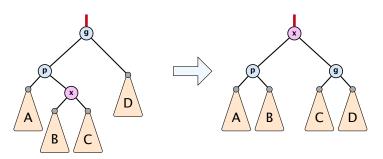




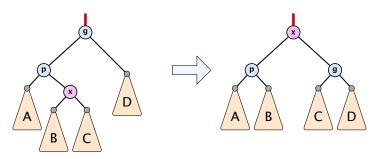
$$\begin{split} \frac{1}{2} \Big(r'(p) + r'(g) - 2r'(x) \Big) \\ &= \frac{1}{2} \Big(\log(s'(p)) + \log(s'(g)) - 2\log(s'(x)) \Big) \end{split}$$



$$\frac{1}{2} \left(r'(p) + r'(g) - 2r'(x) \right) \\
= \frac{1}{2} \left(\log(s'(p)) + \log(s'(g)) - 2\log(s'(x)) \right) \\
\leq \log \left(\frac{1}{2} \frac{s'(p)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \right)$$



$$\frac{1}{2} \Big(r'(p) + r'(g) - 2r'(x) \Big) \\
= \frac{1}{2} \Big(\log(s'(p)) + \log(s'(g)) - 2\log(s'(x)) \Big) \\
\leq \log\Big(\frac{1}{2} \frac{s'(p)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \Big) \leq \log\Big(\frac{1}{2} \Big)$$



$$\frac{1}{2} \Big(r'(p) + r'(g) - 2r'(x) \Big) \\
= \frac{1}{2} \Big(\log(s'(p)) + \log(s'(g)) - 2\log(s'(x)) \Big) \\
\leq \log\Big(\frac{1}{2} \frac{s'(p)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \Big) \leq \log\Big(\frac{1}{2} \Big) = -1$$

Amortized cost of the whole splay operation:

$$\leq 1 + 1 + \sum_{\text{steps } t} 3(r_t(x) - r_{t-1}(x))$$

$$= 2 + 3(r(\text{root}) - r_0(x))$$

$$\leq \mathcal{O}(\log n)$$

Suppose you want to develop a data structure with:

- Insert(x): insert element x.
- **Search**(k): search for element with key k.
- **Delete**(x): delete element referenced by pointer x.
- ▶ find-by-rank(ℓ): return the ℓ -th element; return "error" if the data-structure contains less than ℓ elements.

Suppose you want to develop a data structure with:

- ► Insert(x): insert element x.
- Search(k): search for element with key k.
- **Delete**(x): delete element referenced by pointer x.
- ▶ find-by-rank(ℓ): return the ℓ -th element; return "error" if the data-structure contains less than ℓ elements.

Augment an existing data-structure instead of developing a new one.

How to augment a data-structure

1. choose an underlying data-structure

How to augment a data-structure

- 1. choose an underlying data-structure
- determine additional information to be stored in the underlying structure

How to augment a data-structure

- choose an underlying data-structure
- determine additional information to be stored in the underlying structure
- 3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.

How to augment a data-structure

- choose an underlying data-structure
- determine additional information to be stored in the underlying structure
- verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- develop the new operations

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

1. We choose a red-black tree as the underlying data-structure.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.
- 3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

4. How does find-by-rank work? Find-by-rank(k) = Select(root,k) with

```
Algorithm 1 Select(x, i)
```

```
1: if x = \text{null} then return error
```

2: **if** $left[x] \neq null$ **then** $r \leftarrow left[x]$. size + 1 **else** $r \leftarrow 1$

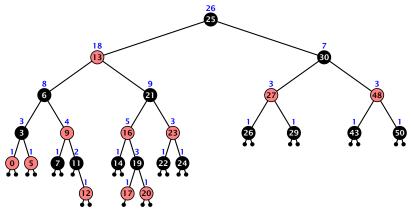
3: **if** i = r **then return** x

4: if i < r then

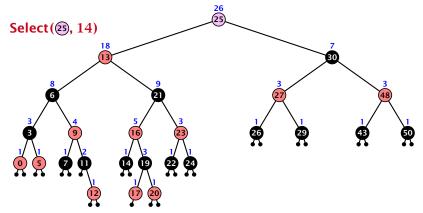
5: **return** Select(left[x], i)

6: **else**

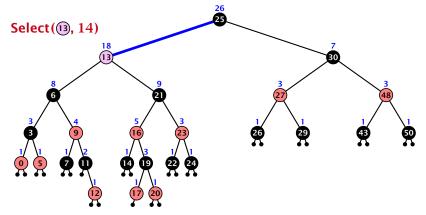
7: **return** Select(right[x], i - r)



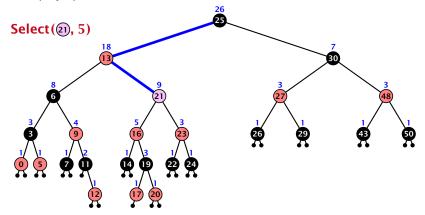
- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



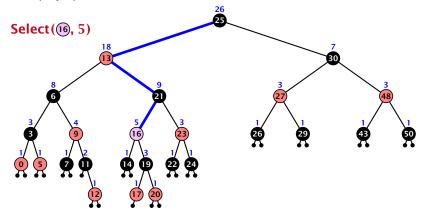
- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



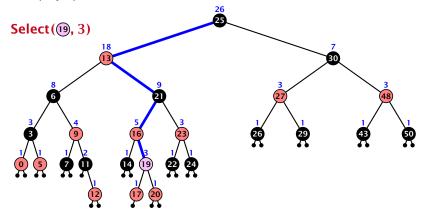
- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



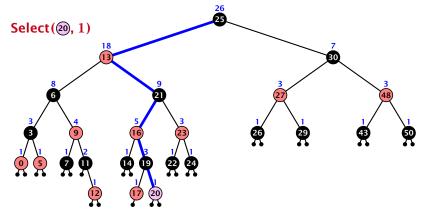
- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

3. How do we maintain information?

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

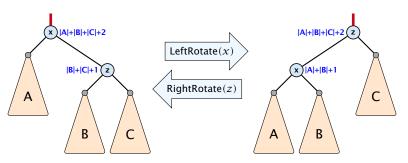
Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete(*x*): Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:

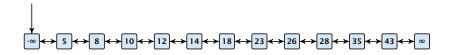


The nodes x and z are the only nodes changing their size-fields.

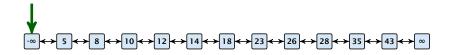
The new size-fields can be computed locally from the size-fields of the children.

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

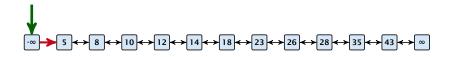
- ightharpoonup time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



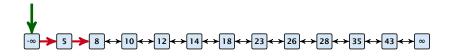
- \blacktriangleright time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



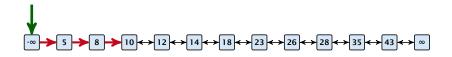
- \blacktriangleright time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



- \blacktriangleright time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

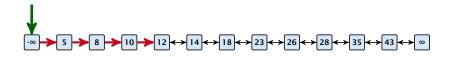


- \blacktriangleright time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



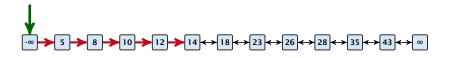
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



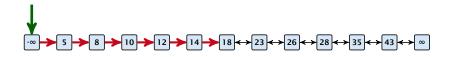
2. Dec. 2024

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



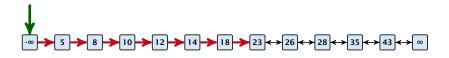
Why do we not use a list for implementing the ADT Dynamic Set?

- \blacktriangleright time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

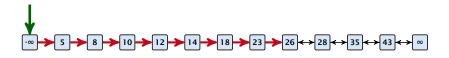


2. Dec. 2024

- ightharpoonup time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$



- \blacktriangleright time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

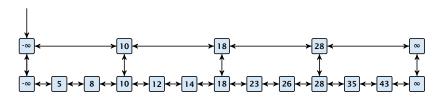


How can we improve the search-operation?

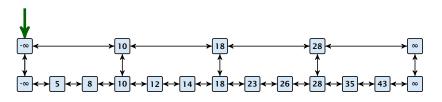
How can we improve the search-operation?

How can we improve the search-operation?

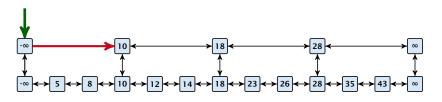
How can we improve the search-operation?



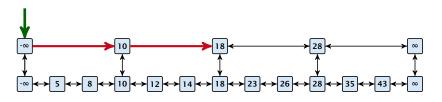
How can we improve the search-operation?



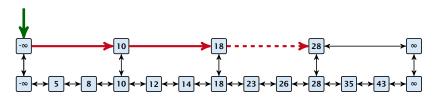
How can we improve the search-operation?



How can we improve the search-operation?

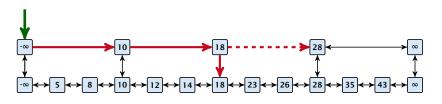


How can we improve the search-operation?



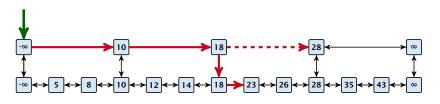
How can we improve the search-operation?

Add an express lane:



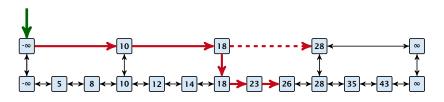
How can we improve the search-operation?

Add an express lane:



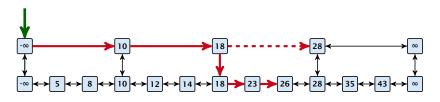
How can we improve the search-operation?

Add an express lane:



How can we improve the search-operation?

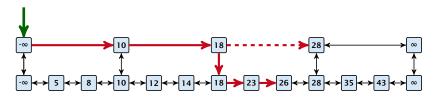
Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0|=n$ the number of all elements (ignoring dummy elements).

How can we improve the search-operation?

Add an express lane:

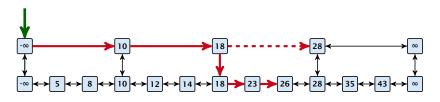


Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1|+rac{|L_0|}{|L_1|}$ (ignoring additive constants)

How can we improve the search-operation?

Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x)
$$(k + 1 \text{ lists } L_0, \ldots, L_k)$$

Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- ▶ Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil \frac{|L_{k-1}|}{|L_k|+1} \right\rceil + 2$ steps.

2. Dec. 2024

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\lceil \frac{|L_{k-1}|}{|L_k|+1} \rceil + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.

2. Dec. 2024

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\lceil \frac{|L_{k-1}|}{|L_k|+1} \rceil + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.
- **.**..

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x) $(k + 1 \text{ lists } L_0, \ldots, L_k)$

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\lceil \frac{|L_{k-1}|}{|L_k|+1} \rceil + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.
- **.**..
- ► At most $|L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1)$ steps.

2. Dec. 2024

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|}=r$, and, hence, $L_k\approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n+kr)$. Choose $r=n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$.

Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|}=r$, and, hence, $L_k\approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}}.$$

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose $r = n^{\frac{1}{k+1}}$. Then

$$r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}$$
$$= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}$$
$$= (k+1)n^{\frac{1}{k+1}}.$$

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.

How to do insert and delete?

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

Insert:

Insert:

A search operation gives you the insert position for element x in every list.

Insert:

- A search operation gives you the insert position for element x in every list.
- ▶ Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.

Insert:

- A search operation gives you the insert position for element x in every list.
- ▶ Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Insert:

- A search operation gives you the insert position for element x in every list.
- ▶ Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

Insert:

- A search operation gives you the insert position for element x in every list.
- ▶ Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

You get all predecessors via backward pointers.

2. Dec. 2024 201/415

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- lnsert x into lists L_0, \ldots, L_{t-1} .

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

2. Dec. 2024 201/415

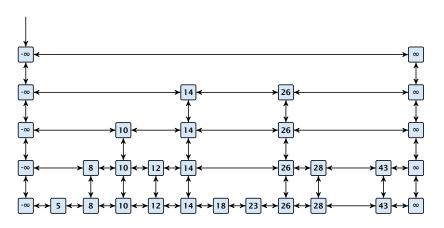
Insert:

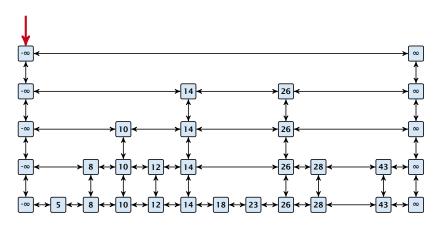
- A search operation gives you the insert position for element x in every list.
- ▶ Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

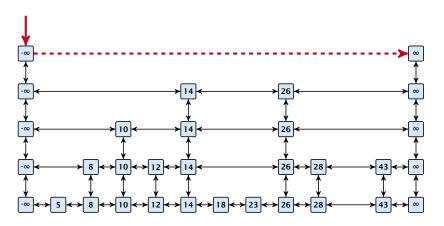
Delete:

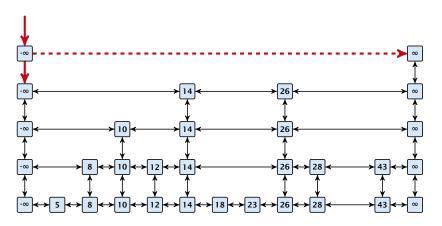
- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

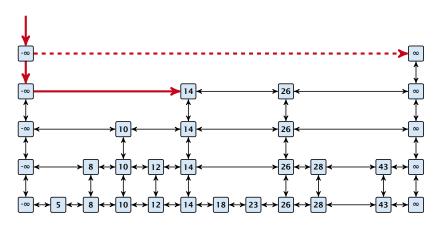
The time for both operations is dominated by the search time.

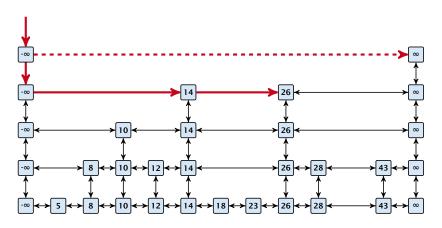


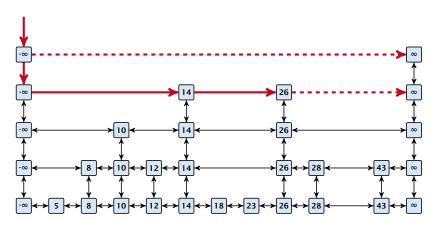


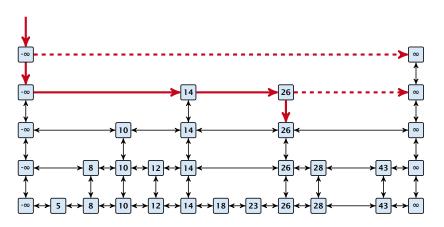




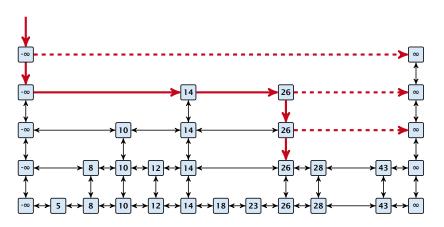


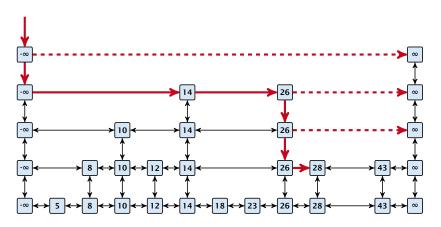


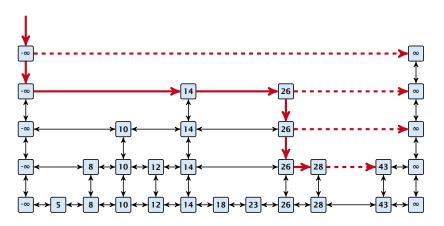


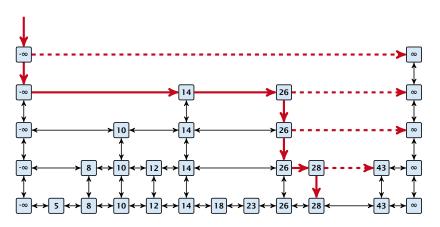


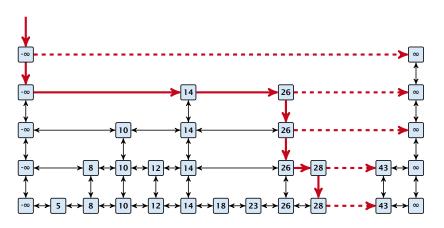


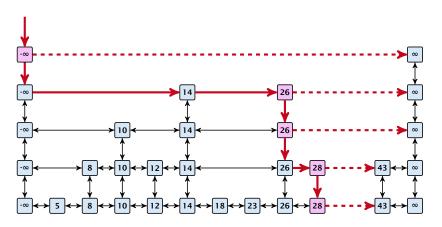


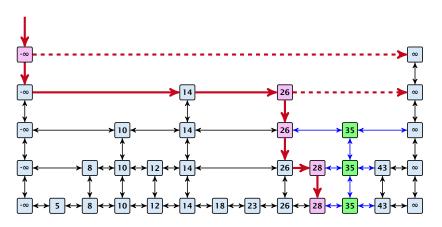












Definition 18 (High Probability)

We say a **randomized** algorithm has running time $\mathcal{O}(\log n)$ with high probability if for any constant α the running time is at most $\mathcal{O}(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Definition 18 (High Probability)

We say a **randomized** algorithm has running time $\mathcal{O}(\log n)$ with high probability if for any constant α the running time is at most $\mathcal{O}(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Here the \mathcal{O} -notation hides a constant that may depend on α .

Suppose there are polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Suppose there are polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_\ell]$$

Suppose there are polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

Suppose there are polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

Suppose there are polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c - \alpha}$$

Suppose there are polynomially many events E_1, E_2, \dots, E_ℓ , $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c - \alpha}.$$

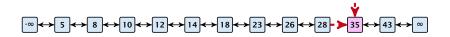
This means $E_1 \wedge \cdots \wedge E_\ell$ holds with high probability.

Lemma 19

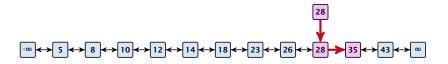
A search (and, hence, also insert and delete) in a skip list with n elements takes time O(logn) with high probability (w. h. p.).

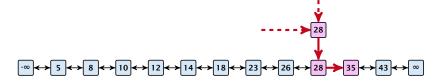
$$\begin{array}{c} -\infty \longleftrightarrow 5 \longleftrightarrow 8 \longleftrightarrow 10 \longleftrightarrow 12 \longleftrightarrow 14 \longleftrightarrow 18 \longleftrightarrow 23 \longleftrightarrow 26 \longleftrightarrow 28 \longleftrightarrow 35 \longleftrightarrow 43 \longleftrightarrow \infty \end{array}$$

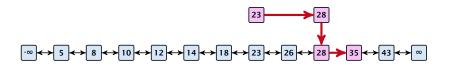
$$\begin{array}{c} -\infty \longleftrightarrow 5 \longleftrightarrow 8 \longleftrightarrow 10 \longleftrightarrow 12 \longleftrightarrow 14 \longleftrightarrow 18 \longleftrightarrow 23 \longleftrightarrow 26 \longleftrightarrow 28 \longleftrightarrow 35 \longleftrightarrow 43 \longleftrightarrow \infty \end{array}$$

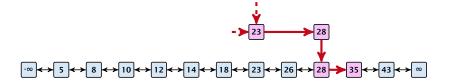


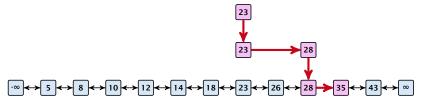
$$\begin{array}{c} -\infty \longleftrightarrow 5 \longleftrightarrow 8 \longleftrightarrow 10 \longleftrightarrow 12 \longleftrightarrow 14 \longleftrightarrow 18 \longleftrightarrow 23 \longleftrightarrow 26 \longleftrightarrow 28 \\ \hline \end{array} \begin{array}{c} 35 \longleftrightarrow 43 \longleftrightarrow \infty \end{array}$$

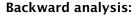


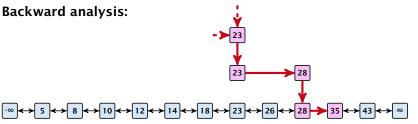






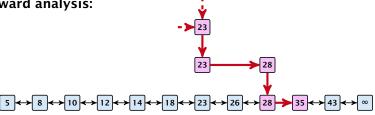




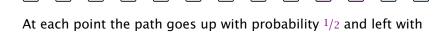


7.5 Skip Lists 2. Dec. 2024

Backward analysis:



At each point the path goes up with probability 1/2 and left with probability 1/2.

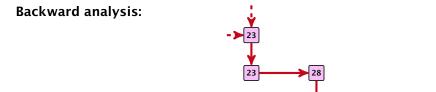


 \leftrightarrow 8 \leftrightarrow 10 \leftrightarrow 12 \leftrightarrow 14 \leftrightarrow 18 \leftrightarrow 23 \leftrightarrow 26 \leftrightarrow 28

We show that w.h.p:

probability 1/2.

A "long" search path must also go very high.

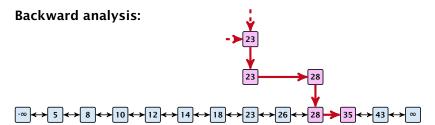


At each point the path goes up with probability 1/2 and left with probability 1/2.

 \leftrightarrow 8 \leftrightarrow 10 \leftrightarrow 12 \leftrightarrow 14 \leftrightarrow 18 \leftrightarrow 23 \leftrightarrow 26 \leftrightarrow 28

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

2. Dec. 2024 206/415

Estimation for Binomial Coefficients

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \dots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$
$$= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \dots \cdot (n - k + 1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$
$$= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!} \le \left(\frac{n}{k}\right)^k \cdot \sum_{i \ge 0} \frac{k^i}{i!}$$

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \left(\frac{en}{k}\right)^k$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \ge \left(\frac{n}{k}\right)^k$$

$$\binom{n}{k} = \frac{n \cdot \dots \cdot (n-k+1)}{k!} \le \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}$$
$$= \left(\frac{n}{k}\right)^k \cdot \frac{k^k}{k!} \le \left(\frac{n}{k}\right)^k \cdot \sum_{i=0}^k \frac{k^i}{i!} = \left(\frac{en}{k}\right)^k$$

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

 $\Pr[E_{z,k}]$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)}$$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = y \log n$ with $y \ge 1$ and $z = (\beta + \alpha)y \log n$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha)y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha)y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha)y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$$

$$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha) y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$$

$$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha)y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$$

$$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$$
 now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha}$$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha)y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$$

$$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$$
 now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64\alpha}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

209/415

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$
 choosing $k = y \log n$ with $y \geq 1$ and $z = (\beta + \alpha) y \log n$
$$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-y\alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$$

$$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64\alpha}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

for $\alpha \geq 1$.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha y \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha\gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

Pr[search requires z steps]

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z=7\alpha\gamma\log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

 $\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z=7\alpha y\log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}] \le \Pr[E_{z,k}] + \Pr[A_{k+1}]$$

 $\le n^{-\alpha} + n^{-(\gamma-1)}$

7.5 Skip Lists

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha\gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}] \le \Pr[E_{z,k}] + \Pr[A_{k+1}]$$

 $\le n^{-\alpha} + n^{-(\gamma-1)}$

This means, the search requires at most z steps, w.h.p.

7.6 van Emde Boas Trees

Dynamic Set Data Structure *S***:**

- \triangleright S. insert(x)
- \triangleright S. delete(x)
- \triangleright S. search(x)
- ► *S*. min()
- ► *S*. max()
- \triangleright S. succ(x)
- \triangleright S. pred(x)

7.6 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

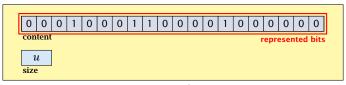
- \triangleright S. insert(x): Inserts x into S.
- ▶ S. delete(x): Deletes x from S. Usually assumes that $x \in S$.
- **S.** member(x): Returns 1 if $x \in S$ and 0 otw.
- **S.** min(): Returns the value of the minimum element in S.
- **S.** $\max()$: Returns the value of the maximum element in S.
- ► *S.* succ(*x*): Returns successor of *x* in *S*. Returns null if *x* is maximum or larger than any element in *S*. Note that *x* needs not to be in *S*.
- ▶ **S. pred**(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

7.6 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from $\{0, 1, \dots, u-1\}$, where u denotes the size of the universe.

213/415



one array of *u* bits

Use an array that encodes the indicator function of the dynamic set.

```
Algorithm 1 array.insert(x)
```

1: content[x] \leftarrow 1;

Algorithm 2 array.delete(x)

1: content[x] \leftarrow 0;

Algorithm 3 array.member(x)

1: return content[x];

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.

Algorithm 4 array.max()

1: for $(i = \text{size} -1; i \ge 0; i--)$ do 2: if content[i] = 1 then return i;

3: return null;

Algorithm 4 array.max()

1: for $(i = \text{size} - 1; i \ge 0; i--)$ do 2: if content[i] = 1 then return i;

3: return null:

Algorithm 5 array.min()

```
1: for (i = 0; i < \text{size}; i++) do
```

2: **if** content[i] = 1 **then return** i;

3: return null;

Algorithm 4 array.max()

1: for $(i = \text{size} -1; i \ge 0; i--)$ do 2: if content[i] = 1 then return i;

3: return null;

Algorithm 5 array.min()

1: **for** (i = 0; i < size; i++) **do** 2: **if** content[i] = 1 **then return** i;

3: return null:

Running time is $\mathcal{O}(u)$ in the worst case.

Algorithm 6 array.succ(x)

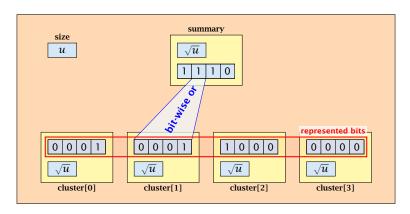
1: for (i = x + 1; i < size; i++) do 2: if content[i] = 1 then return i; 3: return null;

Algorithm 7 array.pred(x)

1: for $(i = x - 1; i \ge 0; i--)$ do 2: if content[i] = 1 then return i;

3: return null:

Running time is $\mathcal{O}(u)$ in the worst case.



- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The *i*-th bit in the summary array stores the bit-wise or of the bits in the *i*-th cluster.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u=2^{2k}$ for some $k\geq 1$. Then we can compute the cluster-number for an entry x as $\mathrm{high}(x)$ (the upper half of the dual representation of x) and the position of x within its cluster as $\mathrm{low}(x)$ (the lower half of the dual representation).

Algorithm 8 member(x)

1: **return** cluster[high(x)]. member(low(x));

Algorithm 8 member(x)

1: **return** cluster[high(x)]. member(low(x));

Algorithm 9 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

Algorithm 8 member(x)

1: **return** cluster[high(x)].member(low(x));

Algorithm 9 insert(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)].\operatorname{insert}(\operatorname{low}(x));$
- 2: summary.insert(high(x));
- ► The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 10 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary . delete(high(x));

Algorithm 10 delete(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)]$. $\operatorname{delete}(\operatorname{low}(x))$;
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary . delete(high(x));
- ▶ The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u} . Hence, $\mathcal{O}(\sqrt{u})$.

Algorithm 11 max()

- 1: maxcluster ← summary.max(); 2: if maxcluster = null return null; 3: offs ← cluster[maxcluster].max() 4: return maxcluster ∘ offs;

Algorithm 11 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: offs ← cluster[maxcluster]. max()4: return maxcluster ∘ offs;

Algorithm 12 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: offs ← cluster[mincluster].min();4: return mincluster ∘ offs;

Algorithm 11 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: $offs \leftarrow cluster[maxcluster].max()$
- 4: **return** *maxcluster* ∘ *offs*;

Algorithm 12 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: $offs \leftarrow cluster[mincluster].min();$
- 4: **return** *mincluster* ∘ *offs*;

Running time is roughly $2\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

! The operator o stands for the concatenation of two bitstrings. This means if $x = 0111_2$ and $y = 0001_2$ then $x \circ y = 01110001_2$.

```
Algorithm 13 \operatorname{succ}(x)

1: m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{succ}(\operatorname{low}(x))

2: if m \neq \operatorname{null} then return \operatorname{high}(x) \circ m;

3: \operatorname{succcluster} \leftarrow \operatorname{summary}.\operatorname{succ}(\operatorname{high}(x));

4: if \operatorname{succcluster} \neq \operatorname{null} then

5: \operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{succcluster}].\operatorname{min}();

6: \operatorname{return} \operatorname{succcluster} \circ \operatorname{offs};

7: \operatorname{return} \operatorname{null};
```

```
Algorithm 13 succ(x)

1: m ← cluster[high(x)].succ(low(x))

2: if m ≠ null then return high(x) ∘ m;

3: succcluster ← summary.succ(high(x));

4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();

6: return succcluster ∘ offs;

7: return null;
```

▶ Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

```
Algorithm 14 pred(x)

1: m \leftarrow cluster[high(x)].pred(low(x))

2: if m \neq null then return high(x) \circ m;

3: predcluster \leftarrow summary.pred(high(x));

4: if predcluster \neq null then

5: offs \leftarrow cluster[predcluster].max();

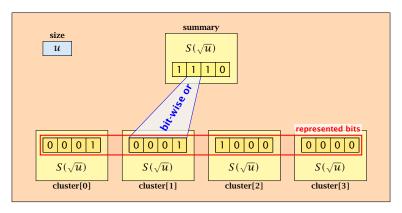
6: return\ predcluster \circ offs;

7: return\ null;
```

▶ Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:



We assume that $u = 2^{2^k}$ for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the recursion).

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure S(4) is not a recursive call as it will call the function array. min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. $\min()$ from within the data-structure S(4) is not a recursive call as it will call the function $\operatorname{array.min}()$.

This means that the non-recursive case is been dealt with while initializing the data-structure.

Algorithm 15 member(x)

1: **return** cluster[high(x)].member(low(x));

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1.$

Algorithm 16 insert(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)].\operatorname{insert}(\operatorname{low}(x));$
- 2: summary.insert(high(x));
- $T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1.$

Algorithm 17 delete(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)]$. $\operatorname{delete}(\operatorname{low}(x))$;
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary . delete(high(x));
- ► $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1$.

Algorithm 18 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: *offs* ← cluster[*mincluster*].min();
- 4: **return** *mincluster* ∘ *offs*;
- $T_{\min}(u) = 2T_{\min}(\sqrt{u}) + 1.$

```
Algorithm 19 \operatorname{succ}(x)

1: m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{succ}(\operatorname{low}(x))

2: if m \neq \operatorname{null} then return \operatorname{high}(x) \circ m;

3: \operatorname{succcluster} \leftarrow \operatorname{summary}.\operatorname{succ}(\operatorname{high}(x));

4: if \operatorname{succcluster} \neq \operatorname{null} then

5: \operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{succcluster}].\operatorname{min}();

6: \operatorname{return} \operatorname{succcluster} \circ \operatorname{offs};
```

 $T_{\text{succ}}(u) = 2T_{\text{succ}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$

7: return null:

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$.

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$
: Set $\ell := \log u$ and $X(\ell) := T_{\mathrm{mem}}(2^{\ell})$. Then $X(\ell)$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell})$$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u)$$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

= $T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

= $T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1$.

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

= $T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1$.

Using Master theorem gives $X(\ell) = \mathcal{O}(\log \ell)$, and hence $T_{\text{mem}}(u) = \mathcal{O}(\log \log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$T_{
m ins}(u)=2T_{
m ins}(\sqrt{u})+1.$$
 Set $\ell:=\log u$ and $X(\ell):=T_{
m ins}(2^\ell).$ Then $X(\ell)$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\mathrm{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\rm ins}(2^{\ell})$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u)$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

= $2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$
$$= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1 .$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

= $2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$.

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\text{ins}}(u) = \mathcal{O}(\log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

= $2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$.

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\text{ins}}(u) = \mathcal{O}(\log u)$.

The same holds for $T_{\text{max}}(u)$ and $T_{\text{min}}(u)$.

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$$

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{c}\log(u).$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$.

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$T_{\rm del}(u)=2T_{\rm del}(\sqrt{u})+T_{\rm min}(\sqrt{u})+1\leq 2T_{\rm del}(\sqrt{u})+c\log(u).$$
 Set $\ell:=\log u$ and $X(\ell):=T_{\rm del}(2^\ell)$. Then
$$X(\ell)$$

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell})$$

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u)$$

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c\log u$$

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c \log u$$
$$= 2T_{\text{del}}(2^{\frac{\ell}{2}}) + c\ell$$

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c \log u$$
$$= 2T_{\text{del}}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell .$$

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{\log(u)}.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c \log u$$
$$= 2T_{\text{del}}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell .$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{\text{del}}(u) = \mathcal{O}(\log u \log \log u)$.

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 \le 2T_{\rm del}(\sqrt{u}) + \frac{c}{c}\log(u).$$

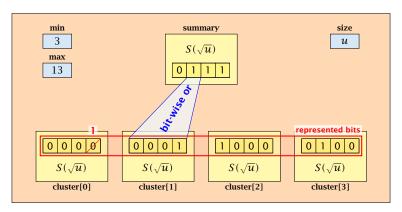
Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c \log u$$
$$= 2T_{\text{del}}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell .$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{\text{del}}(u) = \mathcal{O}(\log u \log \log u)$.

The same holds for $T_{\text{pred}}(u)$ and $T_{\text{succ}}(u)$.

Implementation 4: van Emde Boas Trees



- ► The bit referenced by min is not set within sub-datastructures.
- The bit referenced by max is set within sub-datastructures (if max ≠ min).

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

▶ Recursive calls for min and max are constant time.

- ▶ Recursive calls for min and max are constant time.
- ightharpoonup min = null means that the data-structure is empty.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.

- ▶ Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.

- ▶ Recursive calls for min and max are constant time.
- ightharpoonup min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Algorithm 20 max()

1: return max;

Algorithm 21 min()

1: return min;

Constant time.

Algorithm 22 member(x)

- 1: **if** $x = \min$ **then return** 1; // TRUE
- 2: **return** cluster[high(x)].member(low(x));
- $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \Longrightarrow T(u) = \mathcal{O}(\log \log u).$

```
Algorithm 23 succ(x)
 1: if min \neq null \wedge x < min then return min:
 2: maxincluster \leftarrow cluster[high(x)].max();
 3: if maxincluster \neq null \land low(x) < maxincluster then
          offs \leftarrow cluster[high(x)]. succ(low(x));
 4:
          return high(x) \circ offs;
 5:
 6: else
          succeluster \leftarrow summary.succ(high(x));
 7:
 8:
          if succeluster = null then return null:
 9:
          offs \leftarrow cluster[succeluster].min();
          return succeluster o offs:
10:
T_{\text{succ}}(u) = T_{\text{succ}}(\sqrt{u}) + 1 \Rightarrow T_{\text{succ}}(u) = \mathcal{O}(\log \log u).
```

```
Algorithm 35 insert(x)
 1: if min = null then
         \min = x; \max = x;
 3: else
4:
        if x < \min then exchange x and \min;
      if x > \max then \max = x;
6:
       if cluster[high(x)]. min = null; then
 7:
               summary insert(high(x));
8:
               cluster[high(x)].insert(low(x));
         else
 9:
               \operatorname{cluster}[\operatorname{high}(x)].\operatorname{insert}(\operatorname{low}(x));
10:
```

 $T_{\text{ins}}(u) = T_{\text{ins}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{ins}}(u) = \mathcal{O}(\log \log u).$

Note that the recusive call in Line 8 takes constant time as the if-condition in Line 6 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 7 and in Line 10. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{\text{ins}}(u) = T_{\text{ins}}(\sqrt{u}) + 1$.

Assumes that x is contained in the structure.

```
Algorithm 36 delete(x)
1: if min = max then
      min = max = null;
 3: else
4:
       if x = \min then
             firstcluster ← summary.min();
6:
             offs \leftarrow cluster[firstcluster].min();
        x \leftarrow firstcluster \circ offs;
 7:
         \min \leftarrow x;
        cluster[high(x)]. delete(low(x));
 9:
                         continued...
```

Assumes that x is contained in the structure.

```
Algorithm 36 delete(x)
 1: if min = max then
        min = max = null;
 3: else
4:
         if x = \min then
                                               find new minimum
               firstcluster \leftarrow summary.min();
 5:
               offs \leftarrow cluster[firstcluster].min();
6:
              x \leftarrow firstcluster \circ offs;
 7:
 8:
          \min \leftarrow x:
         cluster[high(x)]. delete(low(x));
 9:
                           continued...
```

Assumes that x is contained in the structure.

```
Algorithm 36 delete(x)
 1: if min = max then
       min = max = null;
 3: else
4:
        if x = \min then
              firstcluster \leftarrow summary.min();
 5:
6:
              offs \leftarrow cluster[firstcluster].min();
              x \leftarrow firstcluster \circ offs;
 7:
 8:
              \min \leftarrow x:
         cluster[high(x)]. delete(low(x));
 9:
                                                           delete
                           continued...
```

```
Algorithm 36 delete(x)
                            ...continued
         if cluster[high(x)]. min() = null then
10:
              summary . delete(high(x));
11:
              if x = \max then
12:
13:
                   summax \leftarrow summary.max();
14:
                   if summax = null then max \leftarrow min;
                   else
15:
16:
                        offs \leftarrow cluster[summax]. max();
17:
                        \max \leftarrow summax \circ offs
         else
18:
              if x = \max then
19:
20:
                   offs \leftarrow cluster[high(x)]. max();
                   \max \leftarrow \text{high}(x) \circ \text{offs};
21:
```

```
Algorithm 36 delete(x)
                            ...continued
                                                      fix maximum
         if cluster[high(x)]. min() = null then
10:
              summary . delete(high(x));
11:
              if x = \max then
12:
13:
                   summax \leftarrow summary.max();
                   if summax = null then max \leftarrow min;
14:
                   else
15:
16:
                        offs \leftarrow cluster[summax]. max();
17:
                        \max \leftarrow summax \circ offs
         else
18:
              if x = \max then
19:
20:
                   offs \leftarrow cluster[high(x)]. max();
                   \max \leftarrow \text{high}(x) \circ \text{offs};
21:
```

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high(x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

$$T_{\rm del}(u) = T_{\rm del}(\sqrt{u}) + c$$
.

This gives $T_{del}(u) = \mathcal{O}(\log \log u)$.

7.6 van Emde Boas Trees

Space requirements:

The space requirement fulfills the recurrence

$$S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \mathcal{O}(\sqrt{u}) .$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is $S(u) = \mathcal{O}(u)$. Exercise.

Let the "real" recurrence relation be

$$S(k^2) = (k+1)S(k) + c_1 \cdot k; S(4) = c_2$$

▶ Replacing S(k) by $R(k) := S(k)/c_2$ gives the recurrence

$$R(k^2) = (k+1)R(k) + ck; R(4) = 1$$

where $c = c_1/c_2 < 1$.

- Now, we show $R(k^2) \le k^2 2$ for $k^2 \ge 4$.
 - Obviously, this holds for $k^2 = 4$.
 - For $k^2 > 4$ we have

$$R(k^{2}) = (1+k)R(k) + ck$$

$$\leq (1+k)(k-2) + k \leq k^{2} - 2$$

▶ This shows that R(k) and, hence, S(k) grows linearly.

Dictionary:

- **S.** insert(x): Insert an element x.
- S. delete(x): Delete the element pointed to by x.
- ▶ *S.* search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

Dictionary:

- **S.** insert(x): Insert an element x.
- S. delete(x): Delete the element pointed to by x.
- S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Dictionary:

- S. insert(x): Insert an element x.
- S. delete(x): Delete the element pointed to by x.
- ▶ *S.* search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Dictionary:

- **S.** insert(x): Insert an element x.
- S. delete(x): Delete the element pointed to by x.
- ▶ *S.* search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.

Definitions:

▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array T[0, ..., n-1] hash-table.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array T[0, ..., n-1] hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

The hash-function *h* should fulfill:

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0,\ldots,n-1]$ hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

The hash-function h should fulfill:

Fast to evaluate.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array T[0, ..., n-1] hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.

249/415

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le |U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

The hash-function h should fulfill:

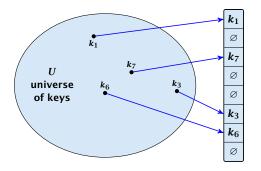
- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

hing 2. Dec. 2024

249/415

Direct Addressing

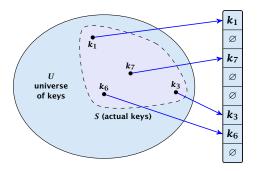
Ideally the hash function maps all keys to different memory locations.



This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.



Such a hash function h is called a perfect hash function for set S.

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

2. Dec. 2024

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \ge \omega(\sqrt{n})$.

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \ge \omega(\sqrt{n})$.

Lemma 20

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}}$$
.

2. Dec. 2024

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \ge \omega(\sqrt{n})$.

Lemma 20

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2n}} \approx 1 - e^{-\frac{m^2}{2n}} .$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \to [0, ..., n-1]$.

2. Dec. 2024

Proof.

Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

 $Pr[A_{m,n}]$

254/415

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n}$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n}$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}}$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}.$$

Proof.

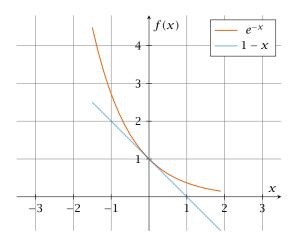
Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}.$$

Here the first equality follows since the ℓ -th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

2. Dec. 2024



The inequality $1-x \le e^{-x}$ is derived by stopping the Taylor-expansion of e^{-x} after the second term.

Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

Resolving Collisions

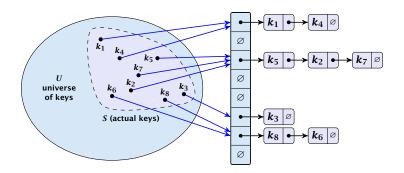
The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.

Arrange elements that map to the same position in a linear list.

- Access: compute h(x) and search list for key[x].
- Insert: insert at the front of the list.



2. Dec. 2024 257/415

Let A denote a strategy for resolving collisions. We use the following notation:

Let A denote a strategy for resolving collisions. We use the following notation:

► A^+ denotes the average time for a **successful** search when using A;

Let A denote a strategy for resolving collisions. We use the following notation:

- ▶ A^+ denotes the average time for a **successful** search when using A;
- ▶ A^- denotes the average time for an **unsuccessful** search when using A;

Let A denote a strategy for resolving collisions. We use the following notation:

- A⁺ denotes the average time for a successful search when using A;
- ▶ A^- denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

2. Dec. 2024

Let ${\cal A}$ denote a strategy for resolving collisions. We use the following notation:

- A⁺ denotes the average time for a successful search when using A;
- ▶ A^- denotes the average time for an **unsuccessful** search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

The time required for an unsuccessful search is 1 plus the length of the list that is examined.

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$.

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$A^- = 1 + \alpha .$$

2. Dec. 2024

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

2. Dec. 2024

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

The expected successful search cost is

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

2. Dec. 2024

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

The expected successful search cost is

$$\mathrm{E}\left[rac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}
ight)
ight]$$

For a successful search observe that we do **not** choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the indicator variable for the event that k_i and k_j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

The expected successful search cost is

$$\mathbb{E}\left[rac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}
ight)
ight] \cos t$$
 for key k_i

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$=\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$=\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$
$$=1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$=\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$=1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$=1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$= 1+\frac{m-1}{2n}$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$= 1+\frac{m-1}{2n}=1+\frac{\alpha}{2}-\frac{\alpha}{2m}.$$

$$\begin{split} \mathbf{E} \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] &= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \mathbf{E} \left[X_{ij} \right] \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right) \\ &= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m-i) \\ &= 1 + \frac{1}{mn} \left(m^2 - \frac{m(m+1)}{2} \right) \\ &= 1 + \frac{m-1}{2n} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2m} \end{split} .$$

Hence, the expected cost for a successful search is $A^+ \leq 1 + \frac{\alpha}{2}$.

261/415

Hashing with Chaining

Disadvantages:

- pointers increase memory requirements
- pointers may lead to bad cache efficiency

Advantages:

- no à priori limit on the number of elements
- deletion can be implemented efficiently
- by using balanced trees instead of linked list one can also obtain worst-case guarantees.

2. Dec. 2024

All objects are stored in the table itself.

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

All objects are stored in the table itself.

Define a function h(k,j) that determines the table-position to be examined in the j-th step. The values $h(k,0),\ldots,h(k,n-1)$ must form a permutation of $0,\ldots,n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

All objects are stored in the table itself.

Define a function h(k,j) that determines the table-position to be examined in the j-th step. The values $h(k,0),\ldots,h(k,n-1)$ must form a permutation of $0,\ldots,n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your element there. If your search reaches h(k, n-1), and this slot is non-empty then your table is full.

2. Dec. 2024

Choices for h(k, j):

Linear probing:

```
h(k,i) = h(k) + i \mod n
(sometimes: h(k,i) = h(k) + ci \mod n).
```

Choices for h(k, j):

Linear probing:

$$h(k,i) = h(k) + i \mod n$$

(sometimes: $h(k,i) = h(k) + ci \mod n$).

Quadratic probing:

$$h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n$$
.

Choices for h(k, j):

Linear probing:

$$h(k,i) = h(k) + i \mod n$$

(sometimes: $h(k,i) = h(k) + ci \mod n$).

Quadratic probing:

$$h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n.$$

Double hashing:

$$h(k, i) = h_1(k) + ih_2(k) \mod n$$
.

Choices for h(k, j):

Linear probing: $h(k, i) = h(k) + i \mod n$ (sometimes: $h(k, i) = h(k) + ci \mod n$).

- Quadratic probing: $h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n$.
- Double hashing: $h(k,i) = h_1(k) + ih_2(k) \mod n$.

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_2(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_1 and c_2 have to be chosen carefully).

2. Dec. 2024

Linear Probing

Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 21

Let L be the method of linear probing for resolving collisions:

$$L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

$$L^- \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)$$

2. Dec. 2024

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 22

Let Q be the method of quadratic probing for resolving collisions:

$$Q^+ \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}$$

$$Q^- \approx \frac{1}{1-\alpha} + \ln\left(\frac{1}{1-\alpha}\right) - \alpha$$

2. Dec. 2024

Double Hashing

Any probe into the hash-table usually creates a cache-miss.

Double Hashing

Any probe into the hash-table usually creates a cache-miss.

Lemma 23

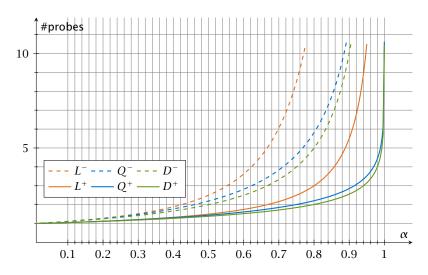
Let D be the method of double hashing for resolving collisions:

$$D^+ \approx \frac{1}{\alpha} \ln \left(\frac{1}{1 - \alpha} \right)$$

$$D^- \approx \frac{1}{1-\alpha}$$

Some values:

α	Linear Probing		Quadratic Probing		Double Hashing	
	L^+	L^{-}	Q^+	Q^-	D^+	D^-
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20



We analyze the time for a search in a very idealized Open Addressing scheme.

► The probe sequence h(k,0), h(k,1), h(k,2),... is equally likely to be any permutation of (0,1,...,n-1).

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i]$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$

$$\le \left(\frac{m}{n}\right)^{i-1}$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i-1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot Pr[A_{i-1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$
$$\le \left(\frac{m}{n}\right)^{i-1} = \alpha^{i-1} .$$

E[X]

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i]$$

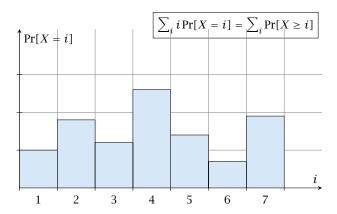
$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1}$$

$$\mathrm{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i}$$

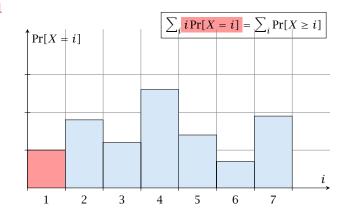
$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}.$$

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i} = \frac{1}{1-\alpha}.$$

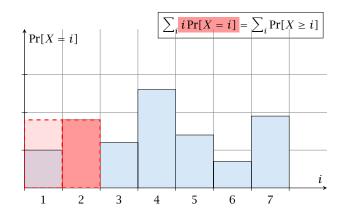
$$\frac{1}{1-\alpha}=1+\alpha+\alpha^2+\alpha^3+\dots$$



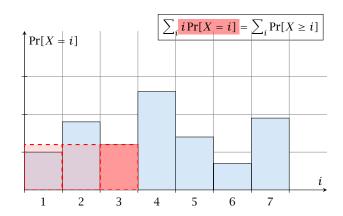
i = 1



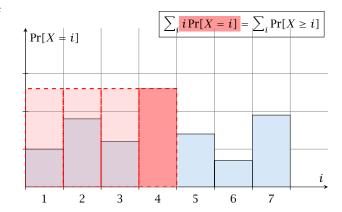
$$i = 2$$

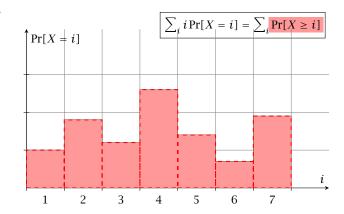


$$i = 3$$

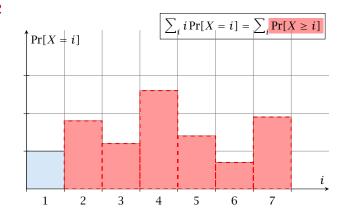


$$i = 4$$

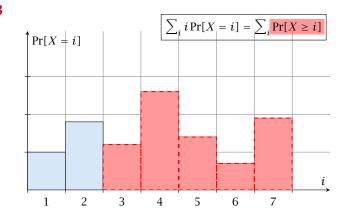




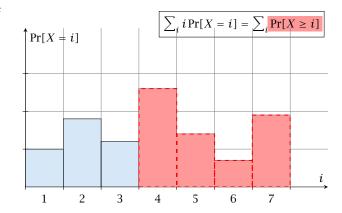
$$i = 2$$

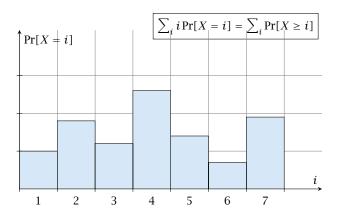


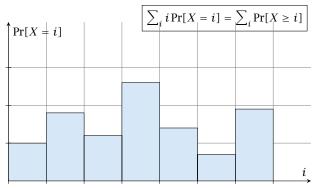
$$i = 3$$



$$i = 4$$







The j-th rectangle² appears in both sums j⁶ times. (j times in the first due to multiplication with j; and j times in the second for summands i = 1, 2, ..., j)

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}$$

2. Dec. 2024

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}$$

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

2. Dec. 2024

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx$$

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m}$$

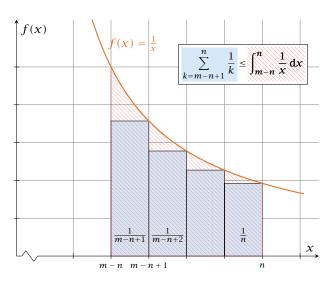
The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha} .$$

2. Dec. 2024



How do we delete in a hash-table?

► For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.

2. Dec. 2024

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.

2. Dec. 2024

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.

2. Dec. 2024 277/415

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
 - During an insertion if a deleted-marker is encountered an element can be inserted there.
 - During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- ▶ If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.

2. Dec. 2024 277/415

For Linear Probing one can delete elements without using deletion-markers.

- For Linear Probing one can delete elements without using deletion-markers.
- Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.

2. Dec. 2024 278/415

```
Algorithm 37 delete(p)

1: T[p] \leftarrow \text{null}

2: p \leftarrow \text{succ}(p)

3: while T[p] \neq \text{null do}

4: y \leftarrow T[p]

5: T[p] \leftarrow \text{null}

6: p \leftarrow \text{succ}(p)

7: \text{insert}(y)
```

p is the index into the table-cell that contains the object to be deleted.

Algorithm 37 delete(p) 1: $T[p] \leftarrow \text{null}$ 2: $p \leftarrow \text{succ}(p)$ 3: while $T[p] \neq \text{null do}$ 4: $y \leftarrow T[p]$ 5: $T[p] \leftarrow \text{null}$ 6: $p \leftarrow \text{succ}(p)$ 7: insert(y)

p is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\dots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

2. Dec. 2024

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\dots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

Universal hashing tries to define a set $\mathcal H$ of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from $\mathcal H$.

2. Dec. 2024

Definition 24

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\dots,n-1\}$ is called universal if for all $u_1,u_2\in U$ with $u_1\neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n}$$
,

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Definition 24

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\dots,n-1\}$ is called universal if for all $u_1,u_2\in U$ with $u_1\neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n}$$
,

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.

Definition 25

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\dots,n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2 :

$$\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \le \frac{1}{n^2}$$
.

Definition 25

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2 :

$$\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \le \frac{1}{n^2}$$
.

This requirement clearly implies a universal hash-function.

Definition 26

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\dots,n-1\}$ is called k-independent if for any choice of $\ell \le k$ distinct keys $u_1,\dots,u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1,\dots,t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \le \frac{1}{n^\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

2. Dec. 2024

Definition 27

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called (μ,k) -independent if for any choice of $\ell \leq k$ distinct keys $u_1,\ldots,u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1,\ldots,t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \le \frac{\mu}{n^\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

2. Dec. 2024

Let $U := \{0, \dots, p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, \dots, p-1\}$, and let $\mathbb{Z}_p^* := \{1, \dots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Let
$$U:=\{0,\ldots,p-1\}$$
 for a prime p . Let $\mathbb{Z}_p:=\{0,\ldots,p-1\}$, and let $\mathbb{Z}_p^*:=\{1,\ldots,p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Define

$$h_{a,b}(x) := (ax + b \bmod p) \bmod n$$

Let $U:=\{0,\ldots,p-1\}$ for a prime p. Let $\mathbb{Z}_p:=\{0,\ldots,p-1\}$, and let $\mathbb{Z}_p^*:=\{1,\ldots,p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Define

$$h_{a,b}(x) := (ax + b \bmod p) \bmod n$$

Lemma 28

The class

$$\mathcal{H} = \{ h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p \}$$

is a universal class of hash-functions from U to $\{0, \ldots, n-1\}$.

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If $x \neq y$ then $(x - y) \not\equiv 0 \pmod{p}$.

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

where we use that \mathbb{Z}_p is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).

The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to a different pair (t_x,t_y) with $t_x:=ax+b$ and $t_y:=ay+b$.

The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to a different pair (t_x,t_y) with $t_x:=ax+b$ and $t_y:=ay+b$.

This holds because we can compute a and b when given t_x and t_y :

The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to a different pair (t_x,t_y) with $t_x:=ax+b$ and $t_y:=ay+b$.

This holds because we can compute a and b when given t_x and t_y :

$$t_X \equiv ax + b \pmod{p}$$

 $t_Y \equiv ay + b \pmod{p}$

▶ The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to a different pair (t_x,t_y) with $t_x:=ax+b$ and $t_y:=ay+b$.

This holds because we can compute a and b when given t_x and t_y :

$$t_{x} \equiv ax + b \qquad (\text{mod } p)$$

$$t_{y} \equiv ay + b \qquad (\text{mod } p)$$

$$t_{x} - t_{y} \equiv a(x - y) \qquad (\text{mod } p)$$

$$t_{y} \equiv ay + b \qquad (\text{mod } p)$$

The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to a different pair (t_x,t_y) with $t_x:=ax+b$ and $t_y:=ay+b$.

This holds because we can compute a and b when given t_{χ} and t_{γ} :

$$t_{x} \equiv ax + b \qquad (\text{mod } p)$$

$$t_{y} \equiv ay + b \qquad (\text{mod } p)$$

$$t_{x} - t_{y} \equiv a(x - y) \qquad (\text{mod } p)$$

$$t_{y} \equiv ay + b \qquad (\text{mod } p)$$

$$a \equiv (t_{x} - t_{y})(x - y)^{-1} \qquad (\text{mod } p)$$

$$b \equiv t_{y} - ay \qquad (\text{mod } p)$$

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

Therefore, we can view the first step (before the $\operatorname{mod} n$ operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at
random.

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

Therefore, we can view the first step (before the mod n-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

2. Dec. 2024

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

Therefore, we can view the first step (before the mod noperation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the mod n operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

2. Dec. 2024

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

Therefore, we can view the first step (before the $\operatorname{mod} n$ operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at
random.

What happens when we do the mod n operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

From the range $0, \ldots, p-1$ the values $t_x, t_x + n, t_x + 2n, \ldots$ map to t_x after the modulo-operation. These are at most $\lceil p/n \rceil$ values.

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1$$

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1$$

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing $t_{\mathcal{Y}}$ such that the final hash-value creates a collision.

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing $t_{\mathcal{Y}}$ such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\Pr_{t_{\mathcal{X}} \neq t_{\mathcal{Y}} \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_{\mathcal{X}} \bmod n = h_1 \\ t_{\mathcal{Y}} \bmod n = h_2 \end{array} \right]$$

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_X \neq t_Y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_X \bmod n = h_1 \\ t_Y \bmod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \bmod n = h_1 \\ t_y \bmod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

Note that the middle is the probability that $h(x) = h_1$ and $h(y) = h_2$. The total number of choices for (t_x, t_y) is p(p-1). The number of choices for t_x (t_y) such that $t_x \mod n = h_1$ $(t_y \mod n = h_2)$ lies between $\lfloor \frac{p}{n} \rfloor$ and $\lceil \frac{p}{n} \rceil$.

2. Dec. 2024 290/415

Definition 29

Let $d \in \mathbb{N}$; $q \ge (d+1)n$ be a prime; and let $\bar{a} \in \{0, \dots, q-1\}^{d+1}$. Define for $x \in \{0, \dots, q-1\}$

$$h_{\bar{a}}(x) := \left(\sum_{i=0}^{d} a_i x^i \bmod q\right) \bmod n$$
.

Let $\mathcal{H}_n^d := \{h_{\bar{a}} \mid \bar{a} \in \{0, \dots, q-1\}^{d+1}\}$. The class \mathcal{H}_n^d is (e, d+1)-independent.

Note that in the previous case we had d = 1 and chose $a_d \neq 0$.

For the coefficients $\bar{a} \in \{0,\ldots,q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \bmod q$$

For the coefficients $\bar{a} \in \{0,\ldots,q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \bmod q$$

The polynomial is defined by d+1 distinct points.

Fix $\ell \le d+1$; let $x_1, \dots, x_\ell \in \{0, \dots, q-1\}$ be keys, and let t_1, \dots, t_ℓ denote the corresponding hash-function values.

Fix $\ell \leq d+1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let $A^{\ell} = \{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$

Fix $\ell \leq d+1$; let $x_1,\ldots,x_\ell \in \{0,\ldots,q-1\}$ be keys, and let t_1,\ldots,t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell}=\{h_{\tilde{a}}\in\mathcal{H}\mid h_{\tilde{a}}(x_i)=t_i \text{ for all } i\in\{1,\ldots,\ell\}\}$$

Then

$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n$$
 and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

Fix $\ell \leq d+1$; let $x_1,\ldots,x_\ell \in \{0,\ldots,q-1\}$ be keys, and let t_1,\ldots,t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell} = \{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\} \}$$

Then
$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n \text{ and}$$

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\} \}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d+1 points.

Fix $\ell \leq d+1$; let $x_1,\ldots,x_\ell \in \{0,\ldots,q-1\}$ be keys, and let t_1,\ldots,t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell} = \{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\} \}$$

Then
$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n \text{ and}$$

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\} \}}_{=:B_i}$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing d+1 points.

We first fix the values for inputs $x_1, ..., x_\ell$.

Fix $\ell \leq d+1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell} = \{h_{\tilde{a}} \in \mathcal{H} \mid h_{\tilde{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$$

Then

 $h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n$ and

$$f_{\bar{a}}(x_i) \in \underbrace{\{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}}_{=:B_i}$$

In order to obtain the cardinality of A^ℓ we choose our polynomial by fixing d+1 points.

We first fix the values for inputs x_1, \ldots, x_ℓ . We have

$$|B_1| \cdot \ldots \cdot |B_{\ell}|$$

possibilities to do this (so that $h_{\bar{a}}(x_i) = t_i$).

Now, we choose $d-\ell+1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Now, we choose $d-\ell+1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \le \lceil \frac{q}{n} \rceil^\ell \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

2. Dec. 2024

Therefore the probability of choosing $h_{ ilde{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}}$$

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}}$$

Therefore the probability of choosing $h_{ ilde{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}}$$

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\begin{split} & \frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ & \leq \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \end{split}$$

Therefore the probability of choosing $h_{\tilde{a}}$ from A_{ℓ} is only

$$\begin{split} & \frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ & \leq \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}} \ . \end{split}$$

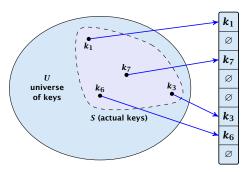
Therefore the probability of choosing $h_{ ilde{a}}$ from A_{ℓ} is only

$$\begin{split} & \frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{(\frac{q+n}{n})^{\ell}}{q^{\ell}} \leq \left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\ & \leq \left(1 + \frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}} \ . \end{split}$$

This shows that the \mathcal{H} is (e, d+1)-universal.

The last step followed from $q \ge (d+1)n$, and $\ell \le d+1$.

Suppose that we **know** the set S of actual keys (no insert/no delete). Then we may want to design a **simple** hash-function that maps all these keys to different memory locations.



2. Dec. 2024

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

2. Dec. 2024

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

We can find such a hash-function by a few trials.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

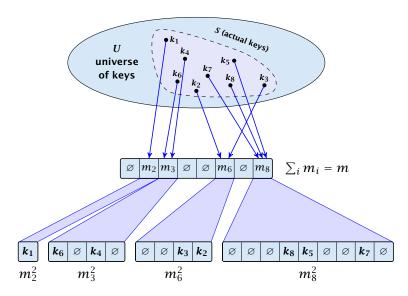
We construct a two-level scheme. We first use a hash-function that maps elements from ${\cal S}$ to ${\cal m}$ buckets.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from ${\it S}$ to ${\it m}$ buckets.

Let m_j denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_j^2 . The second function can be chosen such that all elements are mapped to different locations.



7.7 Hashing 2. Dec. 2024

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$\mathbb{E}\left[\sum_{j}m_{j}^{2}\right]$$

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

The total memory that is required by all hash-tables is $\mathcal{O}(\sum_j m_j^2)$. Note that m_j is a random variable.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$= 2\binom{m}{2} \frac{1}{m} + m = 2m - 1 \ .$$

We need only $\mathcal{O}(m)$ time to construct a hash-function h with $\sum_j m_j^2 = \mathcal{O}(4m)$, because with probability at least 1/2 a random function from a universal family will have this property.

Then we construct a hash-table h_j for every bucket. This takes expected time $\mathcal{O}(m_j)$ for every bucket. A random function h_j is collision-free with probability at least 1/2. We need $\mathcal{O}(m_j)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

► Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- ▶ Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .
- ▶ An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.

Goal:

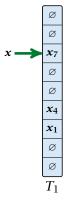
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

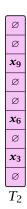
- ▶ Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- ► A search clearly takes constant time if the above constraint is met.

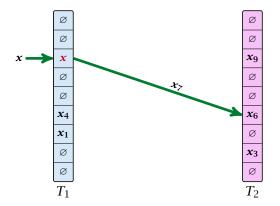
Insert:

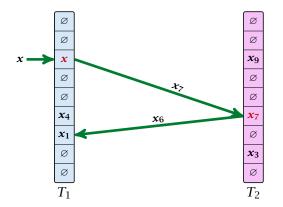


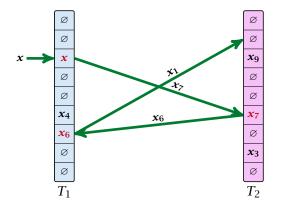
Ø Ø x_9 Ø Ø x_6 Ø \boldsymbol{x}_3 T_2











Algorithm 38 Cuckoo-Insert(x)

```
1: if T_1[h_1(x)] = x \vee T_2[h_2(x)] = x then return

2: steps \leftarrow 1

3: while steps \leq maxsteps do

4: exchange x and T_1[h_1(x)]

5: if x = \text{null} then return

6: exchange x and T_2[h_2(x)]

7: if x = \text{null} then return

8: steps \leftarrow steps +1

9: rehash() // change hash-functions; rehash everything

10: Cuckoo-Insert(x)
```

► We call one iteration through the while-loop a step of the algorithm.

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because x = null.

What is the expected time for an insert-operation?

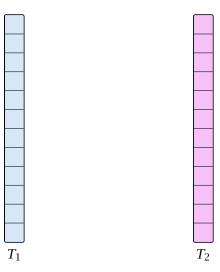
What is the expected time for an insert-operation?

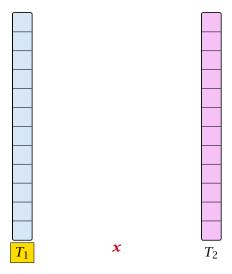
We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

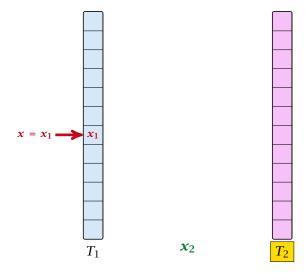
What is the expected time for an insert-operation?

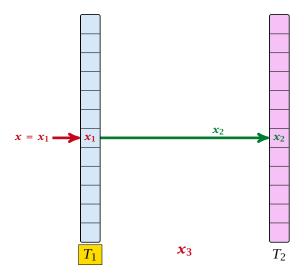
We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

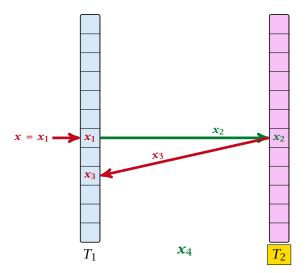
Formally what is the probability to enter an infinite loop that touches s different keys?

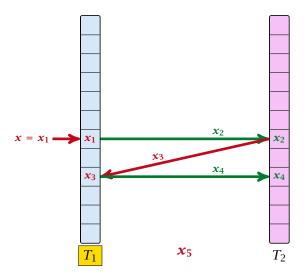


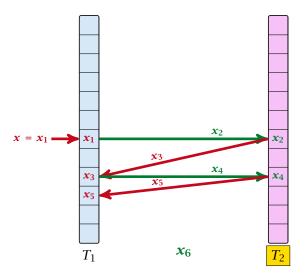


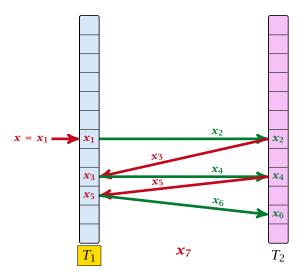


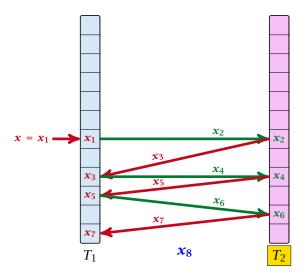


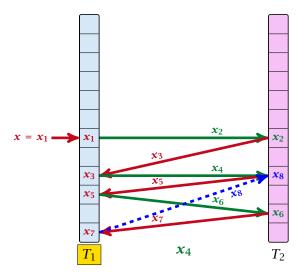


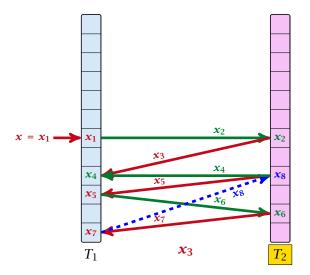


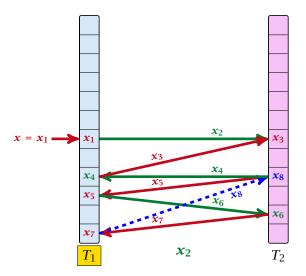


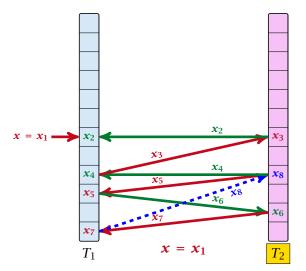


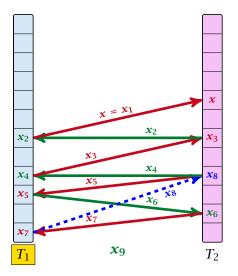


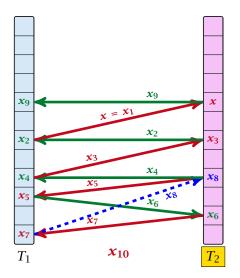


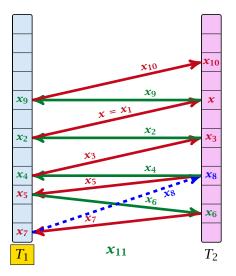


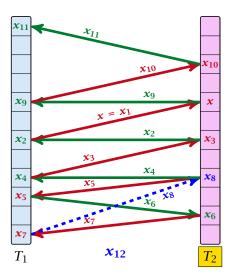


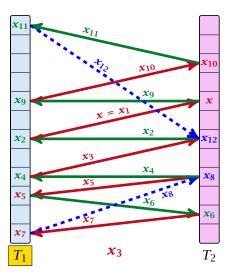


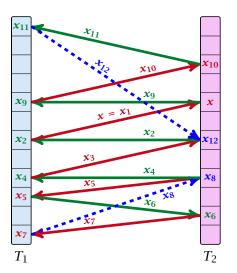


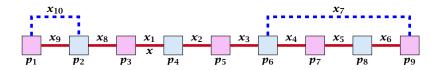




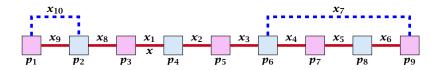






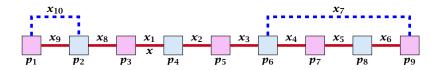


A cycle-structure of size s is defined by



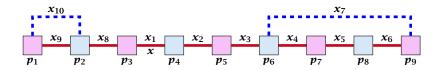
A cycle-structure of size s is defined by

ightharpoonup s-1 different cells (alternating btw. cells from T_1 and T_2).



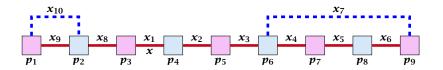
A cycle-structure of size s is defined by

- ightharpoonup s-1 different cells (alternating btw. cells from T_1 and T_2).
- ▶ *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.



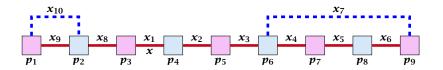
A cycle-structure of size s is defined by

- ▶ s-1 different cells (alternating btw. cells from T_1 and T_2).
- *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.



A cycle-structure of size s is defined by

- ▶ s-1 different cells (alternating btw. cells from T_1 and T_2).
- *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- ► The rightmost cell is "linked backward" to a cell on the left.



A cycle-structure of size s is defined by

- ▶ s-1 different cells (alternating btw. cells from T_1 and T_2).
- *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.
- ▶ One link represents key x; this is where the counting starts.

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_\ell) = p_i$$
 and $h_2(x_\ell) = p_i$

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_j from T_2) we have

$$h_1(x_\ell) = p_i$$
 and $h_2(x_\ell) = p_j$

Observation:

If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \ge 3$.

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ,s) -independent hash-function.

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ, s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ,s) -independent hash-function.

What is the probability that all keys in a cycle-structure of size s correctly map into their T_1 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_1 is a (μ,s) -independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_2 -cell?

This probability is at most $\frac{\mu}{n^s}$ since h_2 is a (μ, s) -independent hash-function.

These events are independent.

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

What is the probability that there exists an active cycle structure of size *s*?

$$s^3 \cdot n^{s-1} \cdot m^{s-1}$$
.

The number of cycle-structures of size s is at most

$$s^3 \cdot n^{s-1} \cdot m^{s-1}$$
.

There are at most s^2 possibilities where to attach the forward and backward links.

$$s^3 \cdot n^{s-1} \cdot m^{s-1}$$
.

- ► There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.

$$s^3 \cdot n^{s-1} \cdot m^{s-1}$$
.

- ► There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- ▶ There are m^{s-1} possibilities to choose the keys apart from x.

$$s^3 \cdot n^{s-1} \cdot m^{s-1}$$
.

- ► There are at most s^2 possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- ▶ There are m^{s-1} possibilities to choose the keys apart from x.
- ▶ There are n^{s-1} possibilities to choose the cells.

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s$$

$$\sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} = \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s$$

$$\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s$$

$$\begin{split} \sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} &= \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s \\ &\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) \; . \end{split}$$

The probability that there exists an active cycle-structure is therefore at most

$$\begin{split} \sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} &= \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s \\ &\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) \; . \end{split}$$

Here we used the fact that $(1 + \epsilon)m \le n$.

The probability that there exists an active cycle-structure is therefore at most

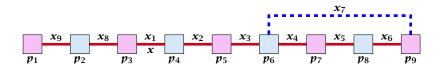
$$\begin{split} \sum_{s=3}^{\infty} s^3 \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}} &= \frac{\mu^2}{nm} \sum_{s=3}^{\infty} s^3 \left(\frac{m}{n}\right)^s \\ &\leq \frac{\mu^2}{m^2} \sum_{s=3}^{\infty} s^3 \left(\frac{1}{1+\epsilon}\right)^s \leq \mathcal{O}\left(\frac{1}{m^2}\right) \ . \end{split}$$

Here we used the fact that $(1 + \epsilon)m \le n$.

Hence,

$$\Pr[\mathsf{cycle}] = \mathcal{O}\left(\frac{1}{m^2}\right)$$
.

Now, we analyze the probability that a phase is not successful without running into a closed cycle.



Sequence of visited keys:

$$x = x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_3, x_2, x_1 = x, x_8, x_9, \dots$$

Consider the sequence of not necessarily distinct keys starting with \boldsymbol{x} in the order that they are visited during the phase.

Consider the sequence of not necessarily distinct keys starting with \boldsymbol{x} in the order that they are visited during the phase.

Lemma 30

If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

$$x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$$

As $r \le i - 1$ the length p of the sequence is

$$p = i + r + (j - i) \le i + j - 1$$
.

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

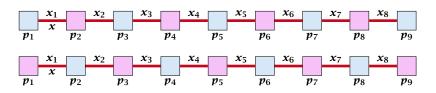
$$x = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i \rightarrow x_r \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$$

As $r \le i - 1$ the length p of the sequence is

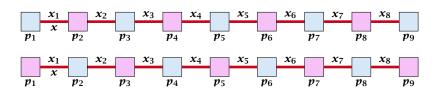
$$p = i + r + (j - i) \le i + j - 1$$
.

Either sub-sequence $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_i$ or sub-sequence $x_1 \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_j$ has at least $\frac{p+2}{3}$ elements.

317/415



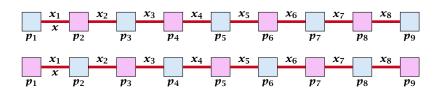
A path-structure of size s is defined by



A path-structure of size s is defined by

ightharpoonup s+1 different cells (alternating btw. cells from T_1 and T_2).

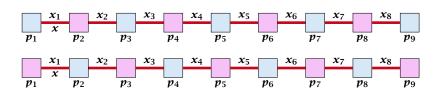
2. Dec. 2024



A path-structure of size s is defined by

- ightharpoonup s+1 different cells (alternating btw. cells from T_1 and T_2).
- *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.

2. Dec. 2024



A path-structure of size s is defined by

- ightharpoonup s + 1 different cells (alternating btw. cells from T_1 and T_2).
- *s* distinct keys $x = x_1, x_2, ..., x_s$, linking the cells.
- ▶ The leftmost cell is either from T_1 or T_2 .

2. Dec. 2024

A path-structure is active if for every key x_{ℓ} (linking a cell p_i from T_1 and a cell p_i from T_2) we have

$$h_1(x_\ell) = p_i$$
 and $h_2(x_\ell) = p_j$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size (2t + 2)/3.

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

2. Dec. 2024 320/415

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

2. Dec. 2024 320/415

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size \boldsymbol{s} is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1}$$

2. Dec. 2024 320/415

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^2s}$.

The probability that there exists an active path-structure of size sis at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^{2s}}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1}$$

7.7 Hashing 2. Dec. 2024 **320/415**

The probability that a given path-structure of size s is active is at most $\frac{\mu^2}{n^2s}$.

The probability that there exists an active path-structure of size s is at most

$$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^2}{n^{2s}}$$

$$\leq 2\mu^2 \left(\frac{m}{n}\right)^{s-1} \leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{s-1}$$

Plugging in s = (2t + 2)/3 gives

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t+2)/3-1} = 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} \ .$$

7.7 Hashing

We choose maxsteps $\geq 3\ell/2 + 1/2$.

We choose maxsteps $\geq 3\ell/2+1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

```
\begin{split} & Pr[\text{unsuccessful} \mid \text{no cycle}] \\ & \leq Pr[\exists \text{ active path-structure of size at least } \tfrac{2\text{maxsteps}+2}{3}] \end{split}
```

```
\begin{split} & \text{Pr}[\text{unsuccessful} \mid \text{no cycle}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \ell+1] \end{split}
```

```
\begin{split} & \text{Pr}[\text{unsuccessful} \mid \text{no cycle}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \ell+1] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size exactly } \ell+1] \end{split}
```

```
\begin{split} & \text{Pr}[\text{unsuccessful} \mid \text{no cycle}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \ell + 1] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size exactly } \ell + 1] \\ & \leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \end{split}
```

We choose maxsteps $\geq 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

Pr[unsuccessful | no cycle]

- $\leq Pr[\,\exists\,\, active\,\, path\text{-structure of size at least}\,\, \frac{2\text{maxsteps}+2}{3}\,]$
- $\leq \Pr[\exists \text{ active path-structure of size at least } \ell+1]$
- $\leq \Pr[\exists \text{ active path-structure of size exactly } \ell+1]$

$$\leq 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^2}$$

We choose maxsteps $\geq 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$\begin{split} & \text{Pr}[\text{unsuccessful} \mid \text{no cycle}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size at least } \ell+1] \\ & \leq \text{Pr}[\exists \text{ active path-structure of size exactly } \ell+1] \end{split}$$

$$\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2}$$

by choosing $\ell \geq \log{(\frac{1}{2\mu^2m^2})}/\log{(\frac{1}{1+\epsilon})} = \log{(2\mu^2m^2)}/\log{(1+\epsilon)}$

We choose maxsteps $\geq 3\ell/2 + 1/2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

 $\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}]$

$$\leq Pr[\exists \text{ active path-structure of size at least } \frac{2\text{maxsteps}+2}{3}]$$

$$\leq$$
 Pr[\exists active path-structure of size at least $\ell+1$]

$$\leq \Pr[\exists \text{ active path-structure of size exactly } \ell+1]$$

$$\leq 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^\ell \leq \frac{1}{m^2}$$

by choosing
$$\ell \ge \log\left(\frac{1}{2\mu^2m^2}\right)/\log\left(\frac{1}{1+\epsilon}\right) = \log\left(2\mu^2m^2\right)/\log\left(1+\epsilon\right)$$

This gives maxsteps = $\Theta(\log m)$.

So far we estimated

$$\Pr[\mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

So far we estimated

$$\Pr[\mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle]

So far we estimated

$$\Pr[\mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

$$Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle]$$

 $\geq c \cdot Pr[no cycle]$

So far we estimated

$$\Pr[\mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

and

$$\Pr[\mathsf{unsuccessful} \mid \mathsf{no} \; \mathsf{cycle}] \leq \mathcal{O}\left(\frac{1}{m^2}\right)$$

Observe that

$$Pr[successful] = Pr[no cycle] - Pr[unsuccessful | no cycle]$$

 $\geq c \cdot Pr[no cycle]$

for a suitable constant c > 0.

The expected number of complete steps in the successful phase of an insert operation is:

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

The expected number of complete steps in the successful phase of an insert operation is:

```
E[number of steps | phase successful]
```

```
= \sum_{t>1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]
```

The expected number of complete steps in the successful phase of an insert operation is:

```
E[number of steps | phase successful]
= \sum_{t>1} \Pr[\text{search takes at least } t \text{ steps } | \text{ phase successful}]
```

We have

Pr[search at least t steps | successful]

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

 $= \sum_{t>1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}]$

We have

Pr[search at least *t* steps | successful]

= $Pr[search at least t steps \land successful] / Pr[successful]$

The expected number of complete steps in the successful phase of an insert operation is:

$$\begin{aligned} & \text{E}[\text{number of steps} \mid \text{phase successful}] \\ &= \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}] \end{aligned}$$

We have

```
\begin{split} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ | \ \mathsf{successful}] \\ &= \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{successful}] / \Pr[\mathsf{successful}] \\ &\leq \frac{1}{c} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{successful}] / \Pr[\mathsf{no} \ \mathsf{cycle}] \end{split}
```

The expected number of complete steps in the successful phase of an insert operation is:

$$\begin{split} & \text{E[number of steps} \mid \text{phase successful}] \\ &= \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}] \end{split}$$

We have

```
\begin{aligned} &\Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ | \ \mathsf{successful}] \\ &= \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{successful}] / \Pr[\mathsf{successful}] \\ &\leq \frac{1}{c} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{successful}] / \Pr[\mathsf{no} \ \mathsf{cycle}] \\ &\leq \frac{1}{c} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{no} \ \mathsf{cycle}] / \Pr[\mathsf{no} \ \mathsf{cycle}] \end{aligned}
```

The expected number of complete steps in the successful phase of an insert operation is:

$$\begin{split} & \text{E}[\text{number of steps} \mid \text{phase successful}] \\ &= \sum_{t \geq 1} \Pr[\text{search takes at least } t \text{ steps} \mid \text{phase successful}] \end{split}$$

We have

```
\begin{aligned} &\Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ | \ \mathsf{successful}] \\ &= \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{successful}] / \Pr[\mathsf{successful}] \\ &\leq \frac{1}{c} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{successful}] / \Pr[\mathsf{no} \ \mathsf{cycle}] \\ &\leq \frac{1}{c} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ \land \ \mathsf{no} \ \mathsf{cycle}] / \Pr[\mathsf{no} \ \mathsf{cycle}] \\ &= \frac{1}{c} \Pr[\mathsf{search} \ \mathsf{at} \ \mathsf{least} \ t \ \mathsf{steps} \ | \ \mathsf{no} \ \mathsf{cycle}] \ . \end{aligned}
```

Hence,

E[number of steps | phase successful]

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t>1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

Hence,

$$\leq \frac{1}{c} \sum_{t>1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^{(2t-1)/3}$$

Hence,

$$\leq \frac{1}{c} \sum_{t>1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \Big(\frac{1}{1+\epsilon}\Big)^{(2(t+1)-1)/3}$$

Hence,

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t$$

Hence,

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) .$$

Hence,

E[number of steps | phase successful]

$$\leq \frac{1}{c} \sum_{t \geq 1} \Pr[\text{search at least } t \text{ steps} \mid \text{no cycle}]$$

$$\leq \frac{1}{c} \sum_{t \geq 1} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2t-1)/3} = \frac{1}{c} \sum_{t \geq 0} 2\mu^2 \left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1)/3}$$

$$= \frac{2\mu^2}{c(1+\epsilon)^{1/3}} \sum_{t \geq 0} \left(\frac{1}{(1+\epsilon)^{2/3}}\right)^t = \mathcal{O}(1) .$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = \mathcal{O}(1/m^2)$ (probability $\mathcal{O}(1/m^2)$ of running into a cycle and probability $\mathcal{O}(1/m^2)$ of reaching maxsteps without running into a cycle).

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = \mathcal{O}(1/m^2)$ (probability $\mathcal{O}(1/m^2)$ of running into a cycle and probability $\mathcal{O}(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1/m)$.

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = \mathcal{O}(1/m^2)$ (probability $\mathcal{O}(1/m^2)$ of running into a cycle and probability $\mathcal{O}(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p := \mathcal{O}(1/m)$.

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p)$.

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q = \mathcal{O}(1/m^2)$ (probability $\mathcal{O}(1/m^2)$ of running into a cycle and probability $\mathcal{O}(1/m^2)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is $\sum_{i\geq 1} p^i = \frac{1}{1-p} - 1 = \frac{p}{1-p} = \mathcal{O}(p)$.

Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p) = \mathcal{O}(1)$.

2. Dec. 2024 325/415

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Z_i denote the event that the i-th rehash occurs:

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Z_i denote the event that the *i*-th rehash occurs:

$$\Pr[Z_i] \le \prod_{j=0}^{j-1} \Pr[Y_h \mid Z_j] \le p^i$$

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Z_i denote the event that the *i*-th rehash occurs:

$$\Pr[Z_i] \le \prod_{j=0}^{t-1} \Pr[Y_h \mid Z_j] \le p^i$$

Let X_i^s , $s \in \{1, ..., m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$E[X_i^s]$$

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Z_i denote the event that the i-th rehash occurs:

$$\Pr[Z_i] \le \prod_{i=0}^{t-1} \Pr[Y_h \mid Z_j] \le p^i$$

Let X_i^s , $s \in \{1, ..., m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$\begin{split} \mathbf{E}[X_i^s] &= \mathbf{E}[\mathsf{steps} \mid \mathsf{phase} \; \mathsf{successful}] \cdot \Pr[\mathsf{phase} \; \mathsf{sucessful}] \\ &+ \mathsf{maxsteps} \cdot \Pr[\mathsf{not} \; \mathsf{sucessful}] \end{split}$$

Let Y_i denote the event that the i-th rehash occurs and does not lead to a valid configuration (i.e., one of the m+1 insertions fails):

$$\Pr[Y_i|Z_i] \le (m+1) \cdot \mathcal{O}(1/m^2) \le \mathcal{O}(1/m) =: p.$$

Let Z_i denote the event that the i-th rehash occurs:

$$\Pr[Z_i] \le \prod_{i=0}^{t-1} \Pr[Y_h \mid Z_j] \le p^i$$

Let X_i^s , $s \in \{1, ..., m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$\begin{split} \mathbf{E}[X_i^{s}] &= \mathbf{E}[\mathsf{steps} \mid \mathsf{phase} \; \mathsf{successful}] \cdot \Pr[\mathsf{phase} \; \mathsf{sucessful}] \\ &+ \mathsf{maxsteps} \cdot \Pr[\mathsf{not} \; \mathsf{sucessful}] = \mathcal{O}(1) \;\;. \end{split}$$

$$\mathrm{E}\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{i}^{s}\right]$$

$$E\left[\sum_{i}\sum_{s}Z_{i}X_{s}^{i}\right] = \sum_{i}\sum_{s}E[Z_{i}] \cdot E[X_{s}^{i}]$$

$$\leq \mathcal{O}(m) \cdot \sum_{i}p^{i}$$

$$\leq \mathcal{O}(m) \cdot \frac{p}{1-p}$$

$$= \mathcal{O}(1) .$$

What kind of hash-functions do we need?

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Therefore, it is sufficient to have $(\mu, \Theta(\log m))$ -independent hash-functions.

How do we make sure that $n \ge (1 + \epsilon)m$?

▶ Let $\alpha := 1/(1 + \epsilon)$.

How do we make sure that $n \ge (1 + \epsilon)m$?

- ▶ Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).

How do we make sure that $n \ge (1 + \epsilon)m$?

- ▶ Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n/4$ we divide n by 2 and do a rehash (table-shrink).

How do we make sure that $n \ge (1 + \epsilon)m$?

- ▶ Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n/4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.

How do we make sure that $n \ge (1 + \epsilon)m$?

- ▶ Let $\alpha := 1/(1 + \epsilon)$.
- Keep track of the number of elements in the table. When $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n/4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m = \alpha n/2$. In order for a table-expand to occur at least $\alpha n/2$ insertions are required. Similar, for a table-shrink at least $\alpha n/4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

2. Dec. 2024 329/415

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

8 Priority Queues

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

8 Priority Queues

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

▶ *S.* build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ *S.* build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S. insert(x): Adds element x to the data-structure.

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

- S. build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S. insert(x): Adds element x to the data-structure.
- ▶ element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ *S.* build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S. insert(x): Adds element x to the data-structure.
- ▶ element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.

331/415

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ *S.* build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- \triangleright S. insert(x): Adds element x to the data-structure.
- ▶ element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- **boolean** *S.* **is-empty**(): Returns true if the data-structure is empty and false otherwise.

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- \triangleright S. insert(x): Adds element x to the data-structure.
- ▶ element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- **boolean** *S.* **is-empty**(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

▶ $S. \operatorname{merge}(S'): S := S \cup S'; S' := \emptyset.$

An addressable Priority Queue also supports:

An addressable Priority Queue also supports:

► handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.

An addressable Priority Queue also supports:

- ► handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- ▶ *S.* delete(*h*): Deletes element specified through handle *h*.

An addressable Priority Queue also supports:

- ► handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- **S.** delete(h): Deletes element specified through handle h.
- S. decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

Dijkstra's Shortest Path Algorithm

```
Algorithm 39 Shortest-Path(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: key-field of every node contains distance from s;
 3: S.build(); // build empty priority queue
 4: for all v \in V \setminus \{s\} do
 5: v \cdot \text{key} \leftarrow \infty;
 6: h_v \leftarrow S.insert(v);
 7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
 8: while S.is-empty() = false do
 9:
     v \leftarrow S. \mathsf{delete\text{-}min}():
10: for all x \in V s.t. (v, x) \in E do
11:
                 if x. key > v. key +d(v,x) then
12:
                       S.decrease-key(h_x, v. key + d(v, x));
13:
                       x. \text{key} \leftarrow v. \text{key} + d(v, x);
```

Prim's Minimum Spanning Tree Algorithm

```
Algorithm 40 Prim-MST(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: pred-fields encode MST;
 3: S.build(); // build empty priority queue
 4: for all v \in V \setminus \{s\} do
 5: v \cdot \ker \leftarrow \infty;
 6: h_v \leftarrow S.insert(v);
 7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
 8: while S.is-empty() = false do
 9:
      v \leftarrow S. delete-min();
10: for all x \in V s.t. \{v, x\} \in E do
11:
                if x. key > d(v, x) then
12:
                      S.decrease-key(h_x,d(v,x));
                      x. key \leftarrow d(v, x);
13:
14:
                      x. pred \leftarrow v:
```


Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- ightharpoonup |V| insert() operations
- ▶ |V| delete-min() operations
- ightharpoonup |V| is-empty() operations
- ▶ |E| decrease-key() operations

Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- ▶ |V| insert() operations
- ▶ |V| delete-min() operations
- ightharpoonup |V| is-empty() operations
- \triangleright |E| decrease-key() operations

How good a running time can we obtain?

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

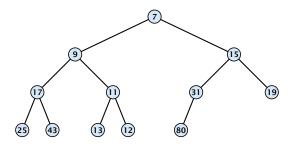
Note that most applications use **build()** only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

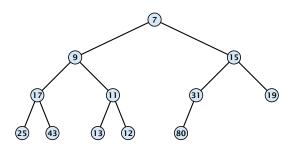
Fibonacci heaps only give an amortized guarantee.

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V|+|E|)\log |V|)$.

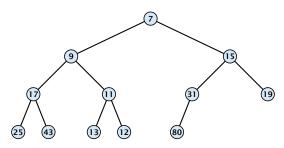
Using Fibonacci Heaps, Prim and Dijkstra run in time $\mathcal{O}(|V|\log|V|+|E|)$.



Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.



- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



Binary Heaps

Operations:

Binary Heaps

Operations:

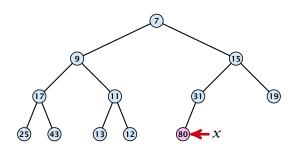
minimum(): return the root-element. Time $\mathcal{O}(1)$.

Binary Heaps

Operations:

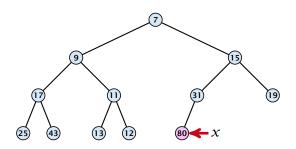
- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.

Maintain a pointer to the last element x.



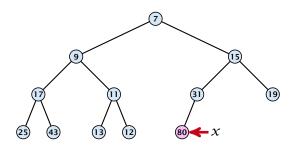
Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.



Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time O(log n). go up until the last edge used was a right edge. go left; go right until you reach a leaf

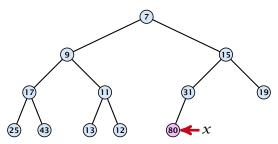


Maintain a pointer to the last element x.

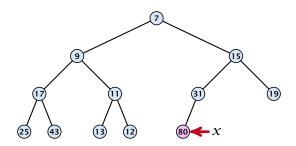
• We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

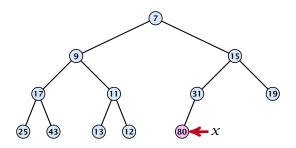


Maintain a pointer to the last element x.



Maintain a pointer to the last element x.

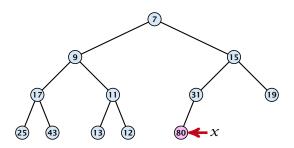
• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.



Maintain a pointer to the last element x.

We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

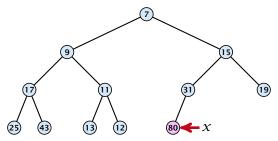


Maintain a pointer to the last element x.

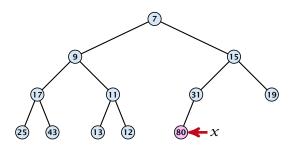
We can compute the successor of x (last element when an element is inserted) in time $O(\log n)$.

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

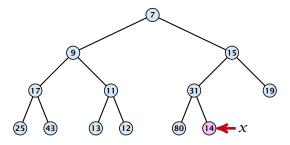
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



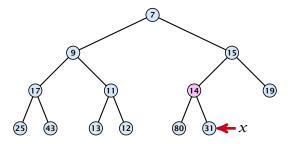
1. Insert element at successor of x.



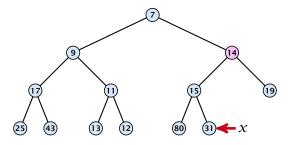
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



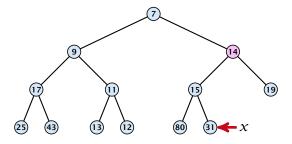
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.

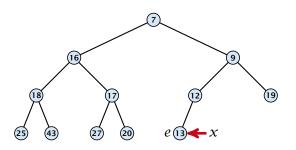


- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.

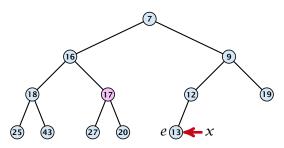


Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

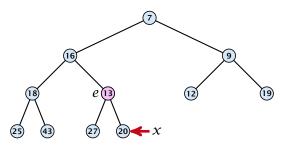
1. Exchange the element to be deleted with the element e pointed to by x.



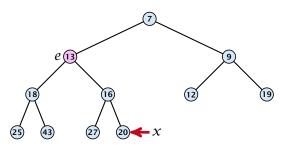
- 1. Exchange the element to be deleted with the element e pointed to by x.
- **2.** Restore the heap-property for the element e.



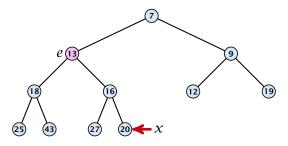
- 1. Exchange the element to be deleted with the element e pointed to by x.
- **2.** Restore the heap-property for the element e.



- 1. Exchange the element to be deleted with the element e pointed to by x.
- **2.** Restore the heap-property for the element e.



- 1. Exchange the element to be deleted with the element epointed to by x.
- 2. Restore the heap-property for the element e.



At its new position e may either travel up or down in the tree (but not both directions).

Operations:

- **minimum():** return the root-element. Time O(1).
- ▶ **is-empty():** check whether root-pointer is null. Time O(1).
- insert(k): insert at successor of x and bubble up. Time $O(\log n)$.
- **delete**(h): swap with x and bubble up or sift-down. Time $O(\log n)$.

Operations:

- **minimum():** Return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** Check whether root-pointer is null. Time O(1).
- ▶ insert(k): Insert at x and bubble up. Time $O(\log n)$.
- **delete**(h): Swap with x and bubble up or sift-down. Time $O(\log n)$.
- **build** (x_1, \ldots, x_n) : Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of i-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

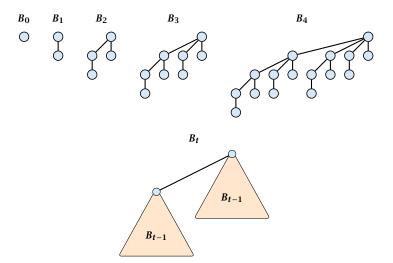
The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of i-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1



Properties of Binomial Trees

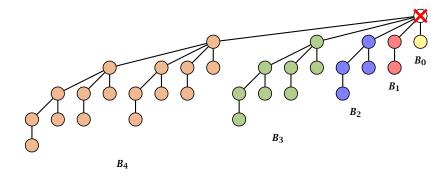
 $ightharpoonup B_k$ has 2^k nodes.

- \triangleright B_k has 2^k nodes.
- \triangleright B_k has height k.

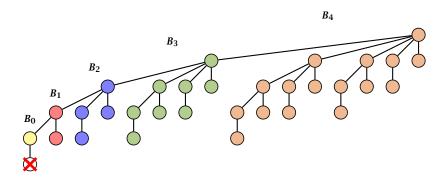
- \triangleright B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.

- $ightharpoonup B_k$ has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .

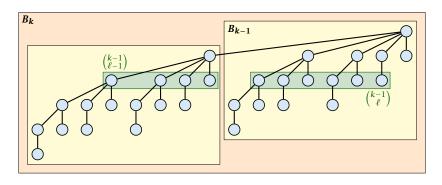
- \triangleright B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, ..., B_{k-1}$.



Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

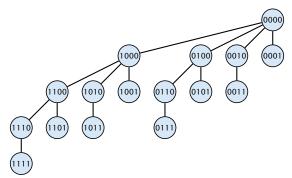


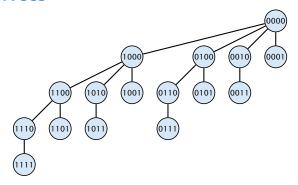
Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .



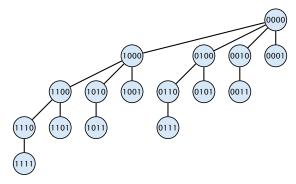
The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}$$



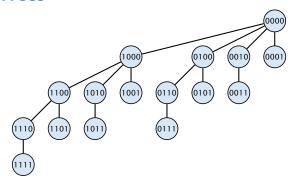


The binomial tree B_k is a sub-graph of the hypercube H_k .



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.



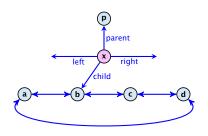
The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

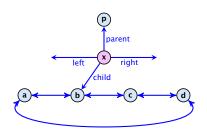
How do we implement trees with non-constant degree?

The children of a node are arranged in a circular linked list.



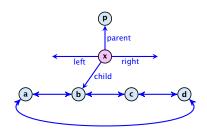
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.



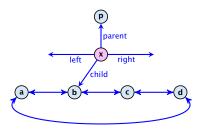
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.

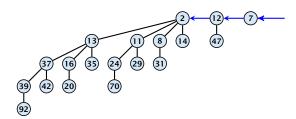


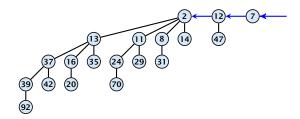
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).

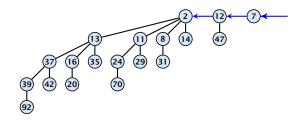


- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- ▶ We can add a child-tree *T* to a node *x* in constant time if we are given a pointer to *x* and a pointer to the root of *T*.



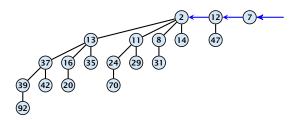


In a binomial heap the keys are arranged in a collection of binomial trees.



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

Binomial Heap: Merge

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

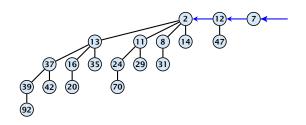
Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

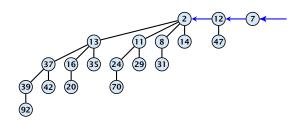
Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

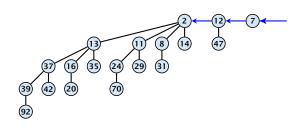


Properties of a heap with n keys:

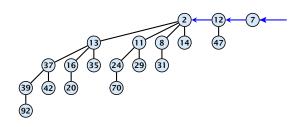
Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.



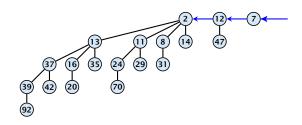
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.



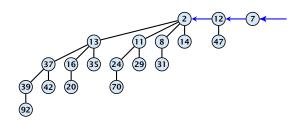
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.



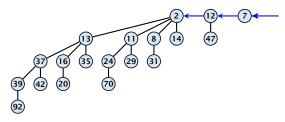
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



The merge-operation is instrumental for binomial heaps.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

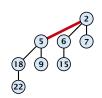
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.



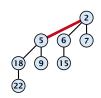
The merge-operation is instrumental for binomial heaps.

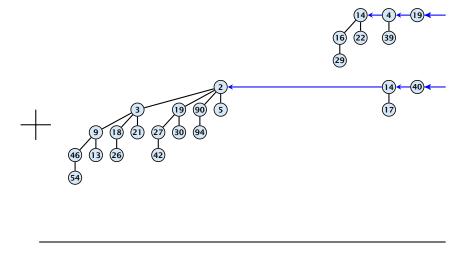
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

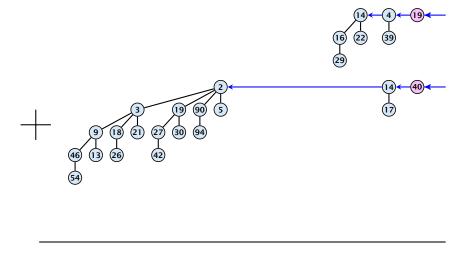
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

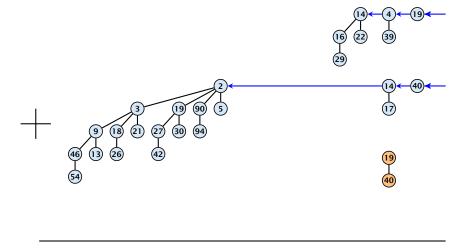
Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

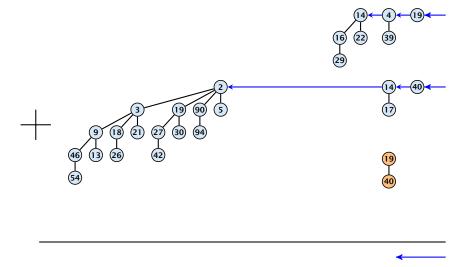
For more trees the technique is analogous to binary addition.



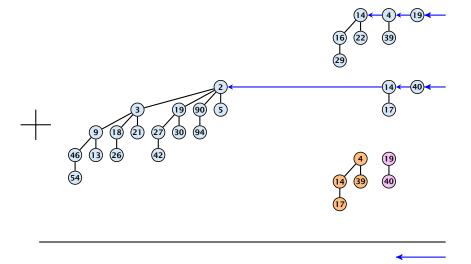


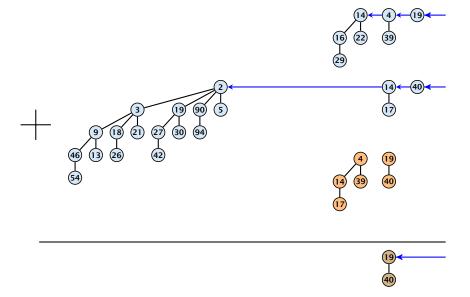


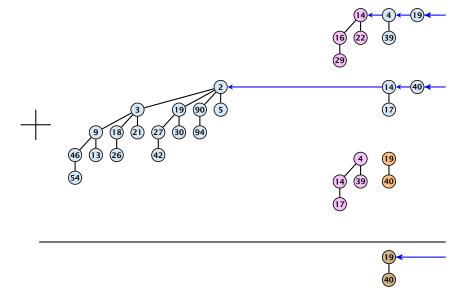


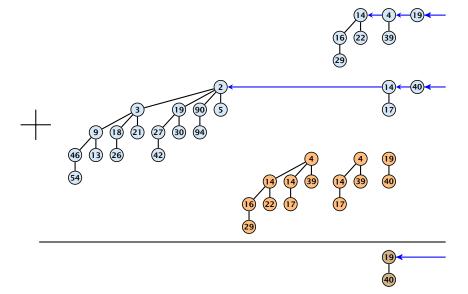


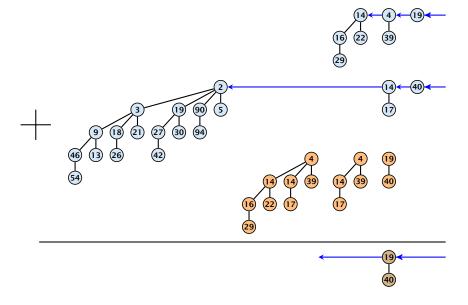


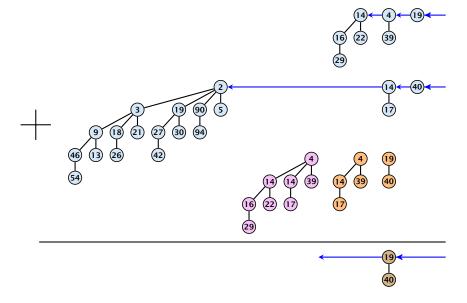


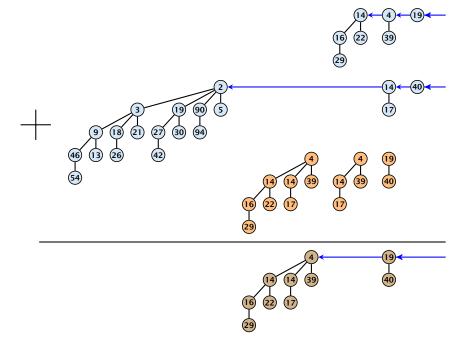


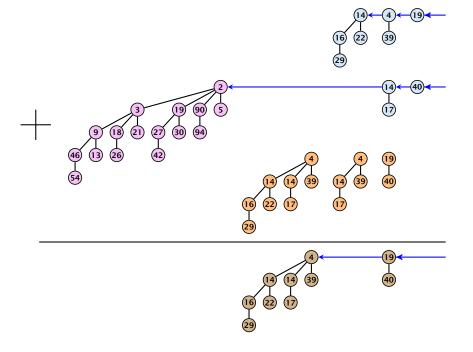


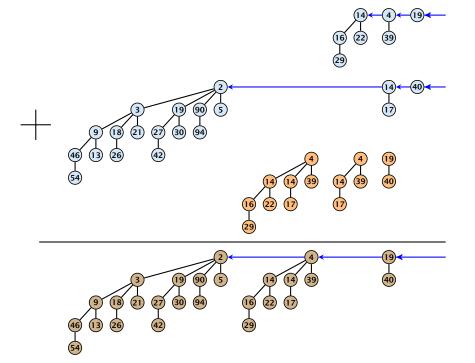


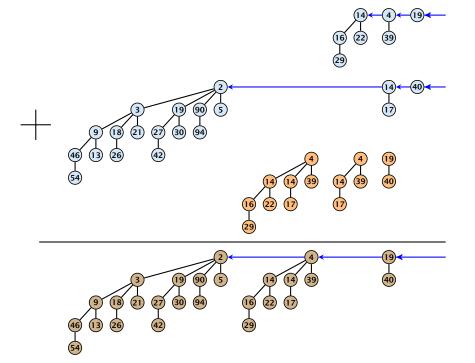












S_1 . merge(S_2):

Analogous to binary addition.

S_1 . merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

S_1 . merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- ▶ Time: $O(\log n)$.

All other operations can be reduced to merge().

S. insert(x):

ightharpoonup Create a new heap S' that contains just the element x.

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- **Execute** S. merge(S').

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- ightharpoonup Execute S. merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

S. minimum():

- Find the minimum key-value among all roots.
- ▶ Time: $O(\log n)$.

S. delete-min():

Find the minimum key-value among all roots.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).

- Find the minimum key-value among all roots.
- **Proof** Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- **Compute** S. merge(S').

- Find the minimum key-value among all roots.
- **Proof** Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- **Compute** S. merge(S').
- ▶ Time: $O(\log n)$.

S. decrease-key(handle h):

S. decrease-key(handle h):

ightharpoonup Decrease the key of the element pointed to by h.

S. decrease-key(handle h):

- ▶ Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.

S. decrease-key(handle h):

- ▶ Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

S. delete(handle *h*):

S. delete(handle *h*):

► Execute *S*. decrease-key(h, $-\infty$).

S. delete(handle *h*):

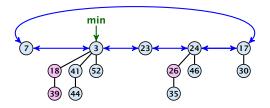
- ► Execute *S*. decrease-key(h, $-\infty$).
- ► Execute *S*. delete-min().

S. delete(handle *h*):

- **Execute** *S*. decrease-key $(h, -\infty)$.
- Execute *S*. delete-min().
- ▶ Time: $\mathcal{O}(\log n)$.

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

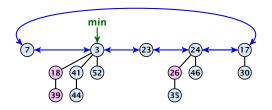


Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x. marked that specifies whether x is marked or not.

The potential function:

- ightharpoonup t(S) denotes the number of trees in the heap.
- \blacktriangleright m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

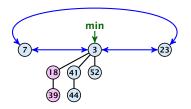
To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

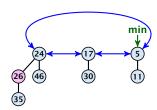
S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Amortized cost $\mathcal{O}(1)$.

S. merge(S')

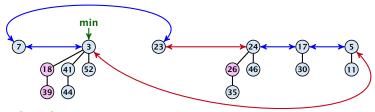
- Merge the root lists.
- Adjust the min-pointer





S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

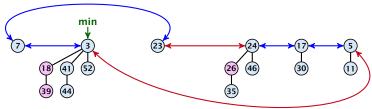


Running time:

Actual cost $\mathcal{O}(1)$.

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

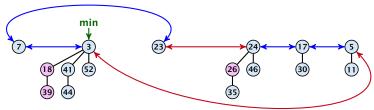


Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

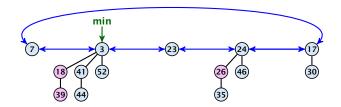


Running time:

- ightharpoonup Actual cost $\mathcal{O}(1)$.
- No change in potential.
- \blacktriangleright Hence, amortized cost is $\mathcal{O}(1)$.

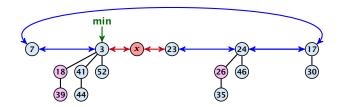
S.insert(x)

- ightharpoonup Create a new tree containing x.
- ► Insert *x* into the root-list.
- Update min-pointer, if necessary.



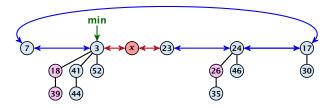
S.insert(x)

- ightharpoonup Create a new tree containing x.
- ► Insert *x* into the root-list.
- Update min-pointer, if necessary.



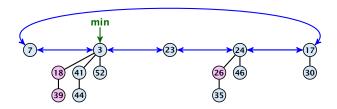
S. insert(x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.



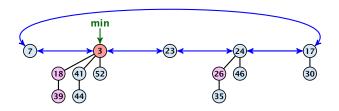
Running time:

- ightharpoonup Actual cost $\mathcal{O}(1)$.
- \triangleright Change in potential is +1.
- ▶ Amortized cost is c + O(1) = O(1).

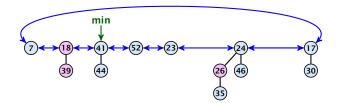


S. delete-min(x)

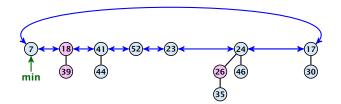
▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.



- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot O(1)$.
- Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

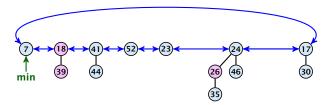


- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot O(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

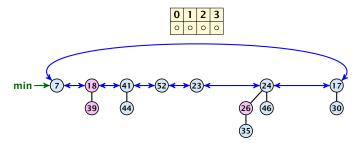


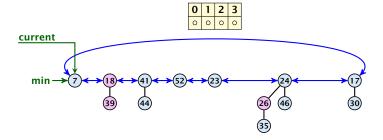
S. delete-min(x)

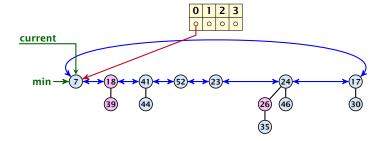
- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

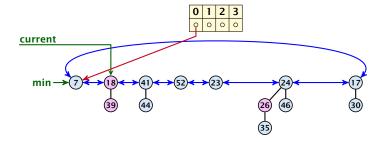


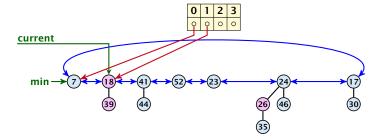
Consolidate root-list so that no roots have the same degree. Time $t\cdot\mathcal{O}(1)$ (see next slide).

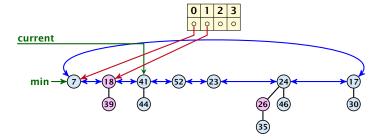


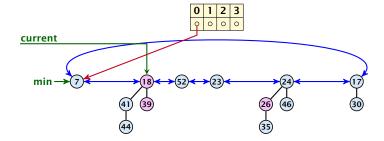


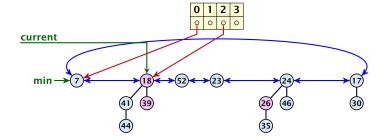


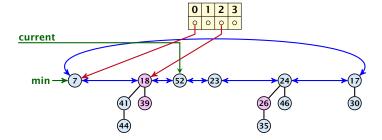


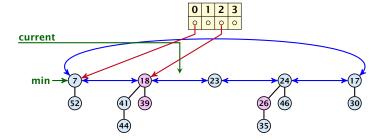


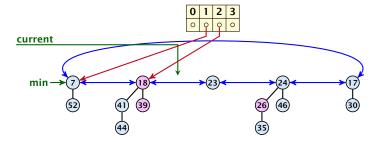


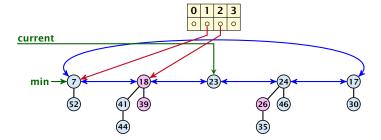


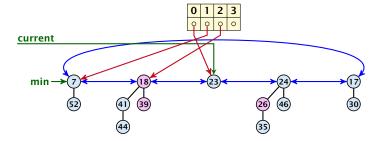


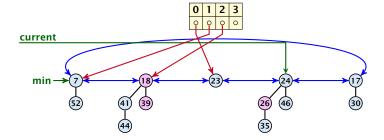


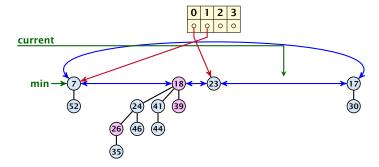


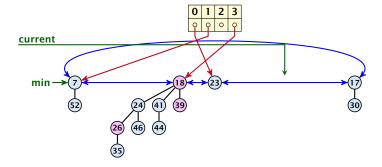


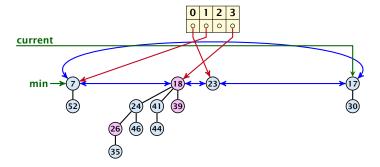


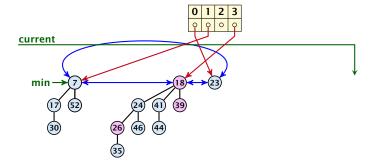


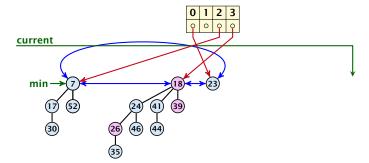


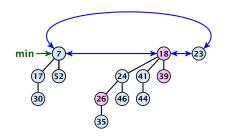












Actual cost for delete-min()

At most $D_n + t$ elements in root-list before consolidate.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

 $t' \le D_n + 1$ as degrees are different after consolidating.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

 $\leq (c_1 + c)D_n + (c_1 - c)t + c$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

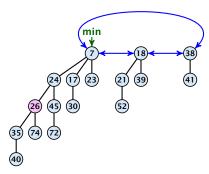
$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$

for $c \ge c_1$.

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

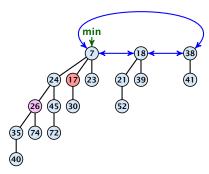
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.



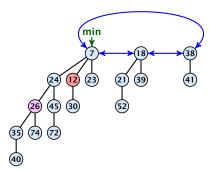
Case 1: decrease-key does not violate heap-property

▶ Just decrease the key-value of element referenced by h. Nothing else to do.



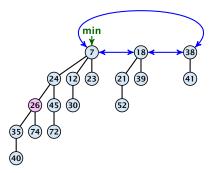
Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by h. Nothing else to do.



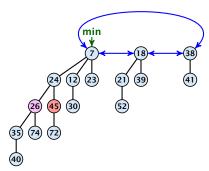
Case 1: decrease-key does not violate heap-property

▶ Just decrease the key-value of element referenced by h. Nothing else to do.

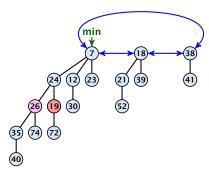


Case 1: decrease-key does not violate heap-property

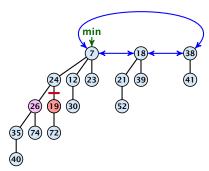
▶ Just decrease the key-value of element referenced by h. Nothing else to do.



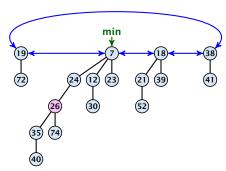
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



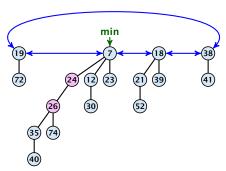
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- \blacktriangleright Mark the (previous) parent of x (unless it's a root).

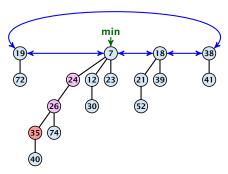


- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

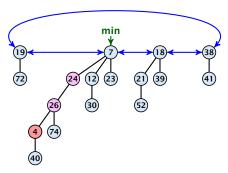


Case 2: heap-property is violated, but parent is not marked

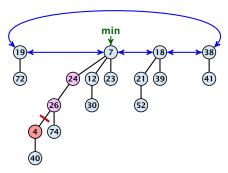
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



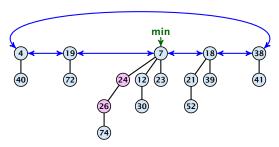
- ▶ Decrease key-value of element x reference by h.
- Let the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



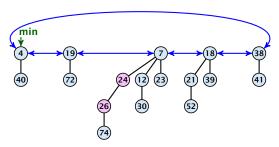
- ▶ Decrease key-value of element x reference by h.
- Let the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



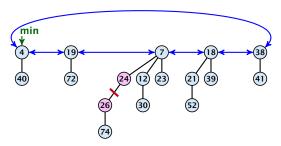
- ▶ Decrease key-value of element x reference by h.
- ightharpoonup Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



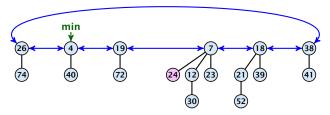
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



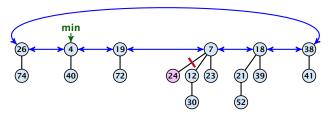
- ▶ Decrease key-value of element x reference by h.
- Let the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



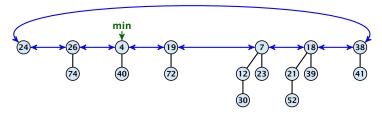
- ▶ Decrease key-value of element x reference by h.
- Let the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- ▶ Decrease key-value of element x reference by h.
- ightharpoonup Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- ▶ Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

Actual cost:

Actual cost:

Constant cost for decreasing the value.

Actual cost:

- Constant cost for decreasing the value.
- ightharpoonup Constant cost for each of ℓ cuts.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Actual cost:

- Constant cost for decreasing the value.
- ightharpoonup Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

 $t' = t + \ell$, as every cut creates one new root.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $ightharpoonup t'=t+\ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1)+c(4-\ell)$$

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2$$

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = \mathcal{O}(1)$$
, if $c \ge c_2$.

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- \triangleright $\mathcal{O}(1)$ for decrease-key.
- \triangleright $\mathcal{O}(D_n)$ for delete-min.

Lemma 32

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

$$\operatorname{degree}(y_i) \geq \left\{ \begin{array}{ll} 0 & \textit{if } i = 1 \\ i - 2 & \textit{if } i > 1 \end{array} \right.$$

Proof

▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.

Proof

- When y_i was linked to x, at least y_1, \ldots, y_{i-1} were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- $ightharpoonup s_k$ monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- $ightharpoonup s_k$ monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- $ightharpoonup s_k$ monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$
$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- $ightharpoonup s_k$ monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=2}^{k-2} s_i$$

384/415

Definition 33

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

k=0:
$$1 = F_0 \ge \Phi^0 = 1$$

k=1: $2 = F_1 \ge \Phi^1 \approx 1.61$
k-2,k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi^{+1}) = \Phi^k$

k=2:
$$3 = F_2 = 2 + 1 = 2 + F_0$$

k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

▶ P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- ▶ **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- ▶ \mathcal{P} . find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.

2. Dec. 2024

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- ▶ **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- ▶ \mathcal{P} . find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ \mathcal{P} . union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

Applications:

► Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.

Applications:

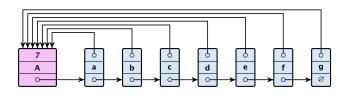
- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

Algorithm 1 Kruskal-MST(G = (V, E), w)1: $A \leftarrow \emptyset$; 2: **for all** $v \in V$ **do** 3: $v. \sec \leftarrow \mathcal{P}. \max(v. label)$ 4: sort edges in non-decreasing order of weight w5: **for all** $(u, v) \in E$ in non-decreasing order **do** 6: **if** $\mathcal{P}. \operatorname{find}(u. \sec) \neq \mathcal{P}. \operatorname{find}(v. \sec)$ **then** 7: $A \leftarrow A \cup \{(u, v)\}$

 \mathcal{P} . union(u. set, v. set)

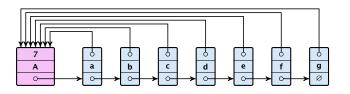
The elements of a set are stored in a list; each node has a backward pointer to the head.

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



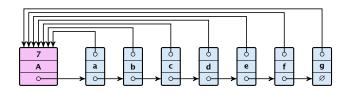
2. Dec. 2024

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



ightharpoonup makeset(x) can be performed in constant time.

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



- ightharpoonup makeset(x) can be performed in constant time.
- $ightharpoonup \operatorname{find}(x)$ can be performed in constant time.

union(x, y)

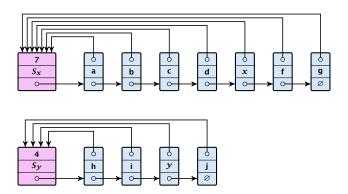
▶ Determine sets S_X and S_Y .

- ▶ Determine sets S_X and S_Y .
- ► Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .

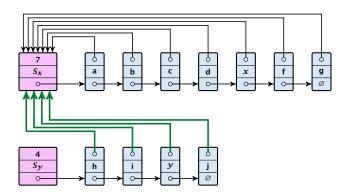
- ▶ Determine sets S_X and S_Y .
- ► Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_{γ} at the head of S_{χ} .

- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- Insert list S_y at the head of S_x .
- Adjust the size-field of list S_x .

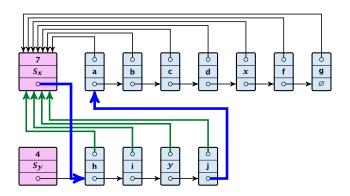
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x .
- ▶ Insert list S_{γ} at the head of S_{χ} .
- Adjust the size-field of list S_x .
- ► Time: $\min\{|S_x|, |S_y|\}$.



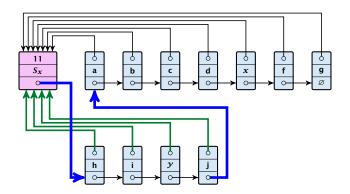
2. Dec. 2024



2. Dec. 2024



2. Dec. 2024 392/415



2. Dec. 2024 392/415

Running times:

- ightharpoonup find(x): constant
- makeset(x): constant
- union(x, y): O(n), where n denotes the number of elements contained in the set system.

Lemma 34

The list implementation for the ADT union find fulfills the following amortized time bounds:

- $ightharpoonup find(x): \mathcal{O}(1)$.
- ightharpoonup makeset(x): $O(\log n)$.
- ightharpoonup union(x, y): O(1).

► There is a bank account for every element in the data structure.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.

2. Dec. 2024

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.

2. Dec. 2024

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- ▶ We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- ▶ We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

▶ If $S_x = S_y$ the cost is constant; no bank accounts change.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- ▶ If $S_X = S_Y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $O(\min\{|S_x|, |S_y|\})$.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

- ▶ If $S_X = S_Y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $O(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

- ▶ If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- ▶ Charge c to every element in set S_x .

Lemma 35

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Lemma 35

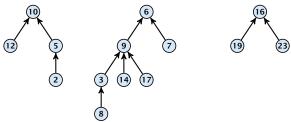
An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $|\log n|$ times.

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

makeset(x)

Create a singleton tree. Return pointer to the root.

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ightharpoonup Time: $\mathcal{O}(1)$.

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ightharpoonup Time: $\mathcal{O}(1)$.

find(x)

Start at element x in the tree. Go upwards until you reach the root.

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ightharpoonup Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- ▶ Time: $\mathcal{O}(\text{level}(x))$, where level(x) is the distance of element x to the root in its tree. Not constant.

2. Dec. 2024

To support union we store the size of a tree in its root.

To support union we store the size of a tree in its root.

union(x, y)

▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \triangleright link(a, b) attaches the smaller tree as the child of the larger.

401/415

To support union we store the size of a tree in its root.

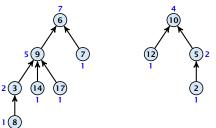
union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

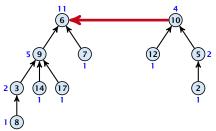


2. Dec. 2024 401/415

To support union we store the size of a tree in its root.

union(x, y)

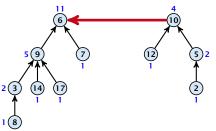
- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



▶ Time: constant for link(a,b) plus two find-operations.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p,c), where p is a parent of c.

2. Dec. 2024 402/415

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p,c), where p is a parent of c.

find(x):

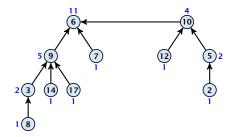
Go upward until you find the root.

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

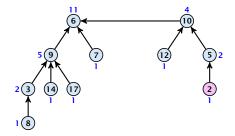
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

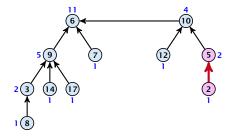


2. Dec. 2024

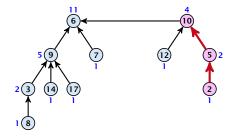
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

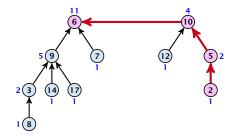


- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



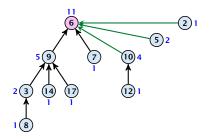
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



2. Dec. 2024

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Note that the size-fields now only give an upper bound on the size of a sub-tree.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Amortized Analysis

Definitions:

Amortized Analysis

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of ν 's subtree in the case that there are no find-operations.

2. Dec. 2024

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of ν 's subtree in the case that there are no find-operations.

 $ightharpoonup rank(v) = \lfloor \log(\operatorname{size}(v)) \rfloor.$

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of ν 's subtree in the case that there are no find-operations.

- $ightharpoonup rank(v) = \lfloor \log(\operatorname{size}(v)) \rfloor.$
- \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

2. Dec. 2024

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of ν 's subtree in the case that there are no find-operations.

- $ightharpoonup rank(v) = \lfloor \log(\operatorname{size}(v)) \rfloor.$
- \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 37

The rank of a parent must be strictly larger than the rank of a child

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- ▶ A node *v* sees at most one node of rank *s* during the running time of the algorithm.

406/415

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- ▶ This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.

406/415

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node *sees* at most one rank s node, but every rank s node is seen by at least 2^s different nodes.

We define

$$tow(i) := \left\{ \begin{array}{ll} 1 & \text{if } i = 0 \\ 2^{tow(i-1)} & \text{otw.} \end{array} \right.$$

We define

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

Theorem 39

Union find with path compression fulfills the following amortized running times:

- ightharpoonup makeset(x) : $\mathcal{O}(\log^*(n))$
- $ightharpoonup find(x) : \mathcal{O}(\log^*(n))$
- ightharpoonup union(x, y): $\mathcal{O}(\log^*(n))$

In the following we assume $n \ge 2$.

In the following we assume $n \ge 2$.

rank-group:

▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.

In the following we assume $n \ge 2$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.

In the following we assume $n \ge 2$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).

In the following we assume $n \ge 2$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \leq \log^*(n) 1$ (which holds for $n \geq 2$).

In the following we assume $n \ge 2$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lceil \log n \rceil) \le \log^*(n) 1$ (which holds for $n \ge 2$).
- ▶ Hence, the total number of rank-groups is at most $\log^* n$.

2. Dec. 2024

Accounting Scheme:

create an account for every find-operation

Accounting Scheme:

- create an account for every find-operation
- lacktriangle create an account for every node v

Accounting Scheme:

- create an account for every find-operation
- lacktriangle create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

If parent[v] is the root we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Observations:

▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) - 1$ times when increasing the rank-group).

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.

- A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.

- A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) 1 \le tow(g)$.

What is the total charge made to nodes?

What is the total charge made to nodes?

The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g) ,$$

where n(g) is the number of nodes in group g.

For $g \ge 1$ we have

n(g)

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s}$$

For $g \ge 1$ we have

$$n(g) \leq \sum_{s=\mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} \leq \sum_{s=\mathsf{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s}$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}}$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

Hence,

$$\sum_{g} n(g) \text{ tow}(g)$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g)$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g>1} n(g) \operatorname{tow}(g) \le n \log^*(n)$$

Without loss of generality we can assume that all makeset-operations occur at the start.

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

2. Dec. 2024

$$A(x,y) = \begin{cases} y+1 & \text{if } x = 0 \\ A(x-1,1) & \text{if } y = 0 \\ A(x-1,A(x,y-1)) & \text{otw.} \end{cases}$$

$$\alpha(m,n) = \min\{i \geq 1 : A(i,\lfloor m/n \rfloor) \geq \log n\}$$

$$A(x,y) = \left\{ \begin{array}{ll} y+1 & \text{if } x=0 \\ A(x-1,1) & \text{if } y=0 \\ A(x-1,A(x,y-1)) & \text{otw.} \end{array} \right.$$

$$\alpha(m,n) = \min\{i \ge 1 : A(i,\lfloor m/n \rfloor) \ge \log n\}$$

- A(0, v) = v + 1
- A(1, v) = v + 2
- $A(2, \nu) = 2\nu + 3$
- ► $A(3, y) = 2^{y+3} 3$ ► $A(4, y) = 2^{2^{2^2}} 3$