7.5 (a, b)-trees

Definition 1

For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)
5. there is a special dummy leaf node with key-value ∞

7.5 (a, b)-trees

Example 2

7.5 (a, b)-trees

Each internal node v with $d(v)$ children stores $d-1$ keys k_{1}, \ldots, k_{d-1}. The i-th subtree of v fulfills

$$
k_{i-1}<\text { key in } i \text {-th sub-tree } \leq k_{i},
$$

where we use $k_{0}=-\infty$ and $k_{d}=\infty$.

$7.5(a, b)$-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B^{+}tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B^{*} tree requires that a node is at least $2 / 3$-full as opposed to $1 / 2$-full (the requirement of a B-tree).

Lemma 3

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq 1+\log _{a}\left(\frac{n+1}{2}\right)$

Proof.

- If $n>0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2 a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^{h}.

Search

Search (19)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h)=\mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Search

Search (8)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h)=\mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Insert element x :

- Follow the path as if searching for key $[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add key $[x]$ to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance (v).

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and $v_{2} . v_{1}$ gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at most $\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b$ (since $b \geq 2$).
- The key k_{j} is promoted to the parent of v. The current pointer to v is altered to point to v_{1}, and a new pointer (to the right of k_{j}) in the parent is added to point to v_{2}.
- Then, re-balance the parent.

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

> First make it into an internal search tree by moving the satellite-data from the leaves to internal nodes. Add dummy leaves.
$7107.5(a, b)$-trees
Ernst Mayr, Harald Räcke

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Re-attach the pointers to individual keys. A
pointer that is between two keys is attached as ; a child of the red key. The incoming pointer, ipoints to the black key.

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Then, color one key in each internal node \bar{v} black. If v contains 3 keys you need to select the middle key otherwise choose a black key I arbitrarily. The other keys are colored red

10 Ernst Mayr, Harald Räcke
$7.5(a, b)$-trees
-

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2, 4)-tree.

Augmenting Data Structures

Bibliography
MS08] Kurt Mehlhorn, Peter Sanders.
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed)
MIT Press and McGraw-Hill, 2009

A description of B-trees (a specific variant of (a, b)-trees) can be found in Chapter 18 of [CLRS90]. Chapter 7.2 of [MS08] discusses (a, b)-trees as discussed in the lecture.
\square

