

Augmenting Path Algorithm

Definition 1

□□□□ Ernst Mayr, Harald Räcke

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson(G = (V, E, c))

1: Initialize $f(e) \leftarrow 0$ for all edges.

- 2: while \exists augmenting path p in G_f do
- 3: augment as much flow along p as possible.

11.1 The Generic Augmenting Path Algorithm

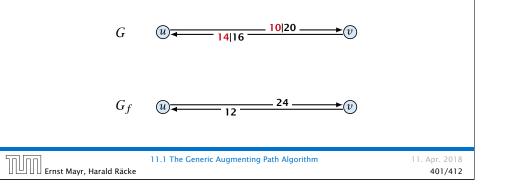
11. Apr. 2018

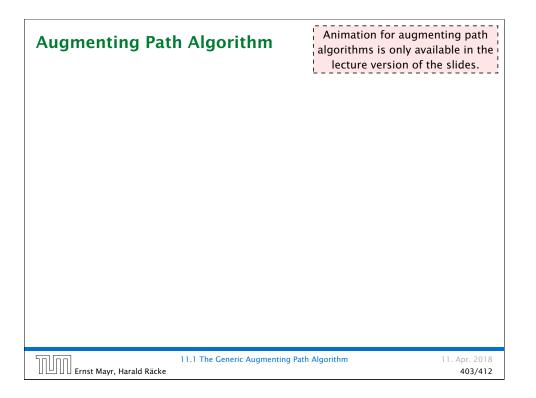
402/412

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.





Augmenting Path Algorithm

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum cut.

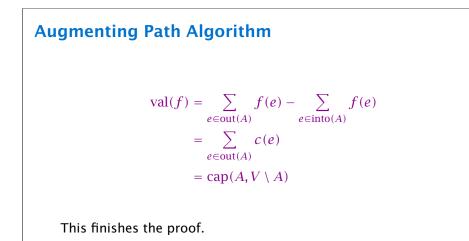
Proof.

Let \boldsymbol{f} be a flow. The following are equivalent:

- **1.** There exists a cut A such that $val(f) = cap(A, V \setminus A)$.
- **2.** Flow f is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

החוחר	Ernst Mayr,		
비민비비	Ernst Mayr,	Harald	Räcke

11.1 The Generic Augmenting Path Algorithm



Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

```
Ernst Mayr, Harald Räcke
```

11. Apr. 2018 406/412

11. Apr. 2018 404/412

Augmenting Path Algorithm

 $1. \Rightarrow 2.$ This we already showed.

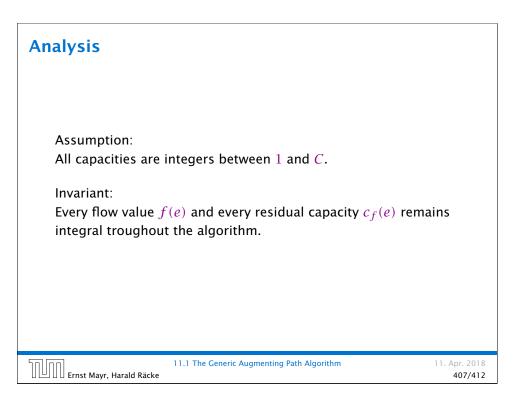
$2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

Ernst Mayr, Harald Räcke	11.1 The Generic Augmenting Path Algorithm	11. Apr. 2018
∐ 💾 🛛 🖉 Ernst Mayr, Harald Räcke		405/412



Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

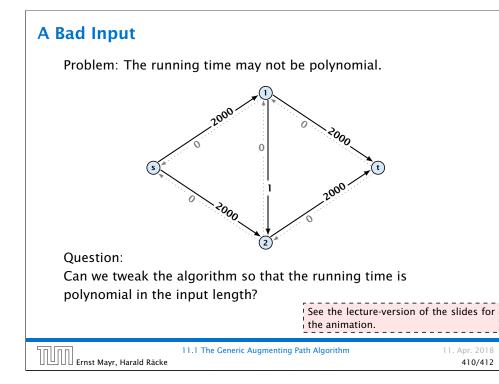
Theorem 5

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

11. Apr. 2018

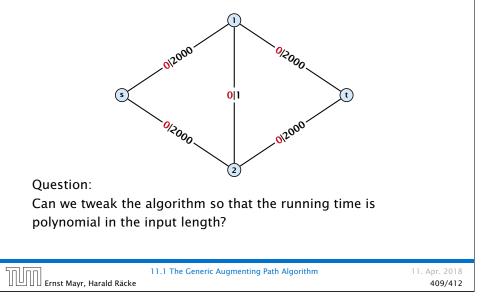
408/412

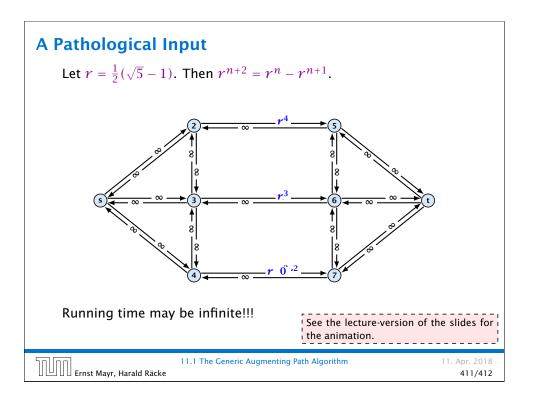
Ernst Mayr, Harald Räcke	11.1 The Generic Augmenting Path Algorithm
🛛 💾 🛛 🖉 Ernst Mayr, Harald Räcke	



A Bad Input

Problem: The running time may not be polynomial.





How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke	11.1 The Generic Augmenting Path Algorithm	

11. Apr. 2018 412/412

