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Greedy-algorithm:

ñ start with f(e) = 0 everywhere

ñ find an s-t path with f(e) < c(e) on every edge

ñ augment flow along the path

ñ repeat as long as possible
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The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf ) (the residual graph):

ñ Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

ñ Gf has edge e′1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e′2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.
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Augmenting Path Algorithm

Definition 1

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.
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Augmenting Path Algorithm
Animation for augmenting path

algorithms is only available in the
lecture version of the slides.
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Augmenting Path Algorithm

Theorem 2

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f ) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .
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Augmenting Path Algorithm

1. =⇒ 2.

This we already showed.

2. =⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. =⇒ 1.

ñ Let f be a flow with no augmenting paths.

ñ Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

ñ Since there is no augmenting path we have s ∈ A and t ∉ A.
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Augmenting Path Algorithm

val(f ) =
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e)

=
∑

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the

second exploits the fact that the flow along incoming edges

must be 0 as the residual graph does not have edges leaving A.
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Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.
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Lemma 4

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 5

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.
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A Bad Input

Problem: The running time may not be polynomial.
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Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
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A Bad Input

Problem: The running time may not be polynomial.
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Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
See the lecture-version of the slides for
the animation.
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A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.

s

2

3

4

5

6

7

t

∞

∞
∞∞

∞
∞

∞
∞

∞ ∞

∞

∞

∞

∞

∞

∞

∞
∞

∞
∞

∞

∞

∞

1

r

r2

r2

0

r + r2

0

r2

r

r2

0

r3

r4

r3

0

Running time may be infinite!!!
See the lecture-version of the slides for
the animation.
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How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.
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