Overview: Shortest Augmenting Paths

Lemma 1

The length of the shortest augmenting path never decreases.

Lemma 2
After at most $\mathcal{O}(m)$ augmentations, the length of the shortest augmenting path strictly increases.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_{f}.

Let L_{G} denote the subgraph of the residual graph G_{f} that contains only those edges (u, v) with $\ell(v)=\ell(u)+1$.

A path P is a shortest $s-u$ path in G_{f} if it is a an $s-u$ path in L_{G}.

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 3
The shortest augmenting path algorithm performs at most $\mathcal{O}(\mathrm{mn})$ augmentations. This gives a running time of $\mathcal{O}\left(m^{2} n\right)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly $k<n$ edges.

In the following we assume that the residual graph G_{f} does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.
These changes cannot decrease the distance between s and t.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_{L} denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

An s - t path in G_{f} that uses edges not in E_{L} has length larger than k, even when considering edges added to G_{f} during the round.

In each augmentation one edge is deleted from E_{L}.

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}\left(m n^{2}\right)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).
There exist networks with $m=\Theta\left(n^{2}\right)$ that require $\mathcal{O}(m n)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

Shortest Augmenting Paths

We maintain a subset E_{L} of the edges of G_{f} with the guarantee that a shortest s - t path using only edges from E_{L} is a shortest augmenting path.

With each augmentation some edges are deleted from E_{L}.
When E_{L} does not contain an $s-t$ path anymore the distance between s and t strictly increases.

Note that E_{L} is not the set of edges of the level graph but a subset of level-graph edges

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_{L} for the phase takes time $\mathcal{O}(m)$.
The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(\mathrm{mn})$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_{L} and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_{f} and has to check whether the edge is still in E_{L} for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}\left(m n^{2}\right)$.

Suppose that the initial distance between s and t in G_{f} is k.
E_{L} is initialized as the level graph L_{G}.

Perform a DFS search to find a path from s to t using edges from E_{L}.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_{L}.

