7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

50/00/	
Ernst Mayr, Harald Räcke	
IIIIII Funct Maxim Haustal Disalia	

11. Apr. 2018 134/158

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most $O(\log n)$.

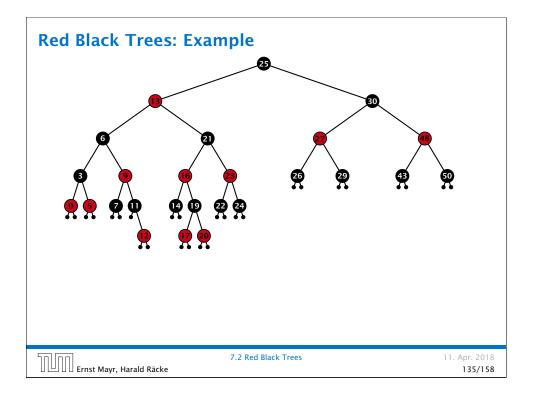
Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.



7.2 Red Black Trees	
Proof of Lemma 4.	
Induction on the height of v .	
 base case (height(v) = 0) If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf. The black height of v is 0. The sub-tree rooted at v contains 0 = 2^{bh(v)} - 1 inner vertices. 	:
7.2 Red Black Trees	1. Apr. 2018 137/158

11. Apr. 2018 136/158

7.2 Red Black Trees

Proof (cont.)

induction step

- Suppose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) - 1.$
- By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} - 1$ internal vertices.
- ▶ Then T_v contains at least $2(2^{bh(v)-1}-1) + 1 \ge 2^{bh(v)} 1$ vertices.

11. Apr. 2018

138/158

```
││└└│ └│ └│ Ernst Mayr, Harald Räcke
```

7.2 Red Black Trees

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on *P* must be black, since a red node must be followed by a black node.

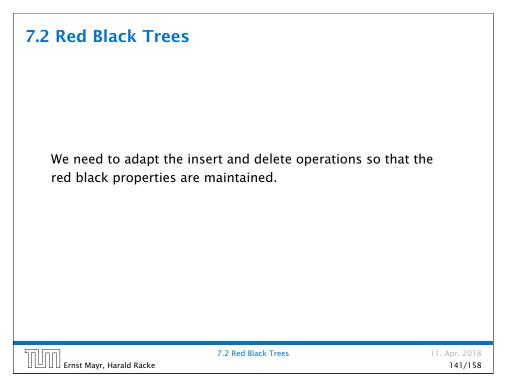
Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 < n$.

139/158

Hence, $h \leq 2\log(n+1) = \mathcal{O}(\log n)$.

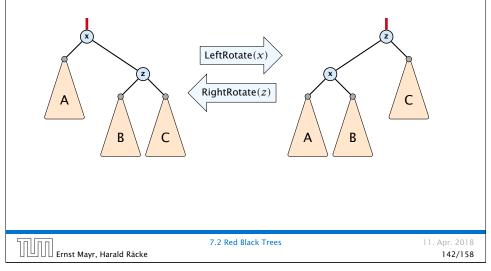
7.2 Red Black Trees 11. Apr. 2018 Ernst Mayr, Harald Räcke

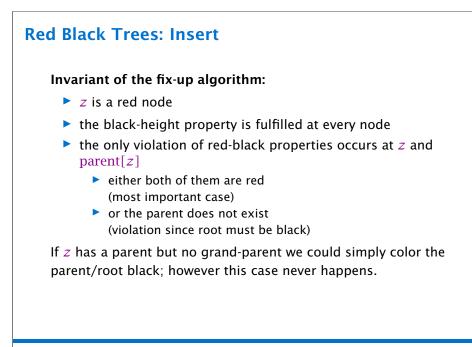


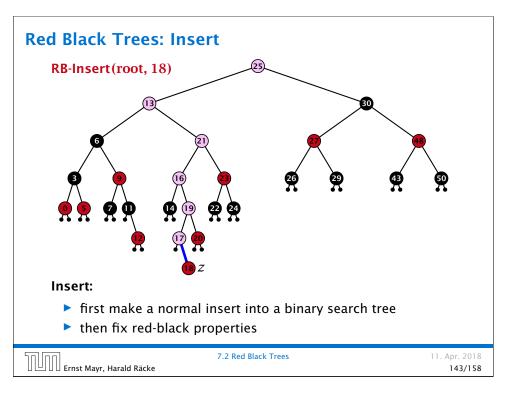
11. Apr. 2018 140/158

Rotations

The properties will be maintained through rotations:



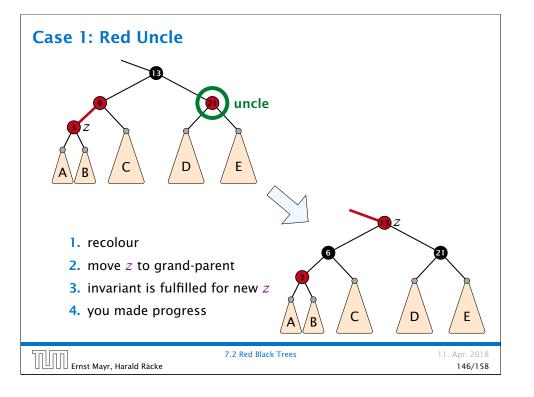


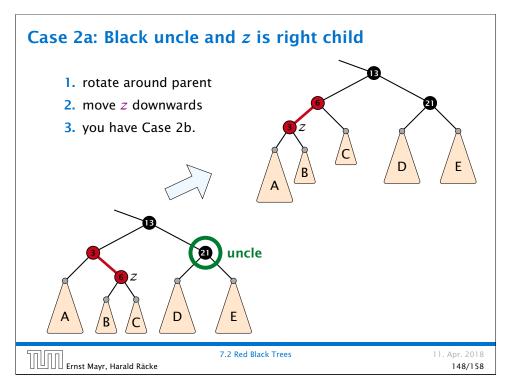


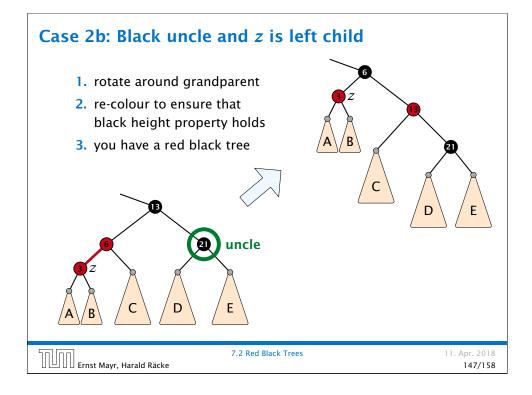
Algorithm 10 InsertFix(z)			
1: while parent[z] \neq null and col[parent[z]] = red do			
2:	2: if parent[z] = left[gp[z]] then z in left subtree of grandparent		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then	Case 1: uncle red	
5:	$\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};$	ack;	
6:	$\operatorname{col}[\operatorname{gp}[z]] \leftarrow \operatorname{red}; z \leftarrow \operatorname{grandpa}$	rent[z];	
7:	else	Case 2: uncle black	
8:	if $z = right[parent[z]]$ then	2a: <i>z</i> right child	
9:	$z \leftarrow p[z]; LeftRotate(z);$		
10:	$\operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[gp[z]] \cdot$	- red; 2b: z left child	
11:	RightRotate $(gp[z]);$		
2:	else same as then-clause but right and	left exchanged	
13: C	$\operatorname{pl}(\operatorname{root}[T]) \leftarrow \operatorname{black};$		

Ernst Mayr, Harald Räcke

11. Apr. 2018 144/158







Red Black Trees: Insert Running time: Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree. Case 2a → Case 2b → red-black tree Case 2b → red-black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Delete

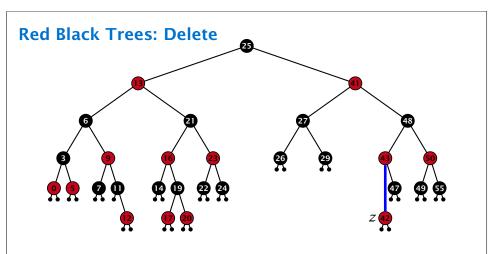
First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

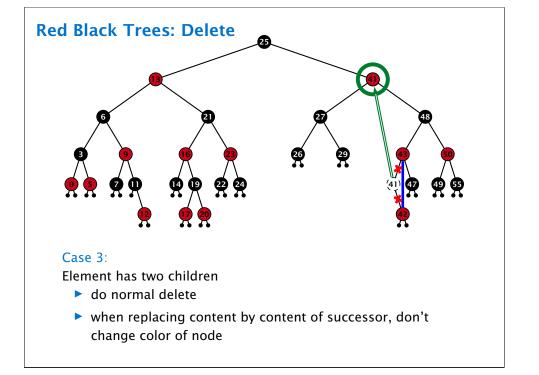
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

החוחר	7.2 Red Black Trees	11. Apr. 2018
Ernst Mayr, Harald Räcke		150/158



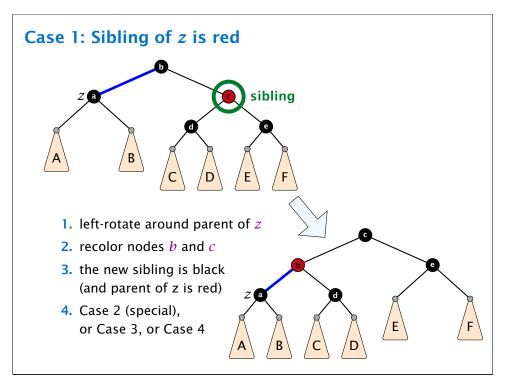
Delete:

- deleting black node messes up black-height property
- if *z* is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

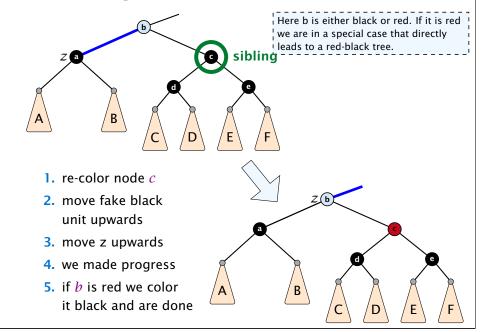


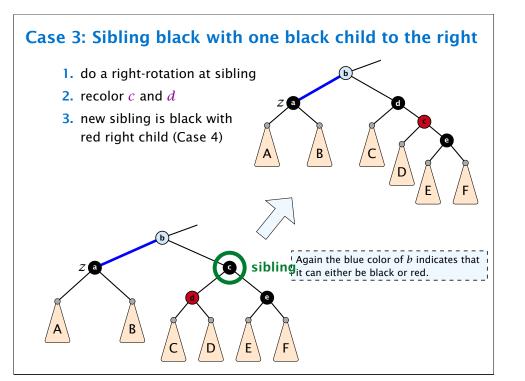
 Invariant of the fix-up algorithm the node z is black if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge. 	Red Black Trees: Delete		
 the node z is black if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled Goal: make rotations in such a way that you at some point can 			
 if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled Goal: make rotations in such a way that you at some point can 			
parent then the black-height property is fulfilled Goal: make rotations in such a way that you at some point can		the node Z is black	

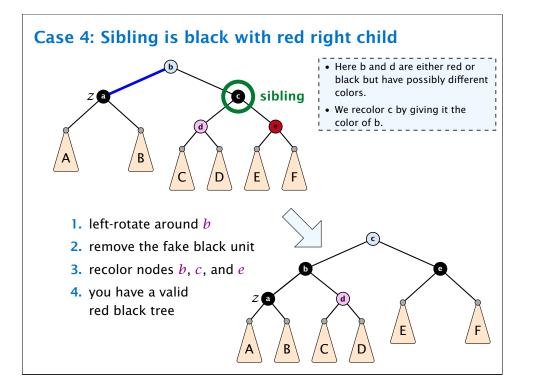
7.2 Red Black Trees



Case 2: Sibling is black with two black children







Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Performing Case 2 at most $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.

[חח] [חר]	7.2 Red Black Trees	11. Apr. 2018
🛛 🛄 🛛 🖉 Ernst Mayr, Harald Räcke		158/158

Red-Black Trees		
Bibliograp	hy	
	Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009	
Red black	trees are covered in detail in Chapter 13 of [CLRS90].	
TIM Ernst N	7.2 Red Black Trees Iayr, Harald Räcke	11. Apr. 2018 159/158

1	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	i i
	i i
- 1	i i
- 1	i i
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
_	i i
_	í I
_	i i
_	i i
_	i i
	i i
	í I
1	i i
	í i
	í I
	i i
	í I