

1 Ernst Mayr, Harald Räcke

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.
- Deleting the root of B_{k} gives trees $B_{0}, B_{1}, \ldots, B_{k-1}$.

Binomial Trees

Deleting the leaf furthest from the root (in B_{5}) leaves a path that connects the roots of sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

1 Ernst Mayr, Harald Räck

8.2 Binomial Heaps

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label $b_{n}, \ldots, b_{1}, b_{0}$ is obtained by setting the least significant 1 -bit to 0 .
The ℓ-th level contains nodes that have $\ell 1$'s in their label.

Binomial Trees

The number of nodes on level ℓ in tree B_{k} is therefore

$$
\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}
$$

10 Ernst Mayr, Harald Räcke
8.2 Binomial Heaps

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x. right point to the left and right sibling of x (if x does not have siblings then x. left $=x$. right $=x$).

8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_{i} 2^{k_{i}}$ must hold. But since the k_{i} are all distinct this means that the k_{i} define the non-zero bit-positions in the binary representation of n.

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property
There is at most one tree for every dimension/order. For example the above heap contains trees B_{0}, B_{1}, and B_{4}.

Ernst Mayr, Harald Räcke	8.2 Binomial Heaps	11. Apr. 2018 328/338

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do concatenation as we want to keep the trees in the list sorted according to size

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous
 to binary addition.

	8.2 Binomial Heaps	11. Apr. 2018
$331 / 338$		

8.2 Binomial Heaps

$S_{1} . \operatorname{merge}\left(S_{2}\right)$:

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

