## 9 Union Find

Union Find Data Structure $\mathcal{P}$ : Maintains a partition of disjoint sets over elements.

## 9 Union Find

Union Find Data Structure $\mathcal{P}$ : Maintains a partition of disjoint sets over elements.

- P. makeset $(\boldsymbol{x})$ : Given an element $x$, adds $x$ to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for $x$ in the data-structure.


## 9 Union Find

Union Find Data Structure $\mathcal{P}$ : Maintains a partition of disjoint sets over elements.

- P. makeset $(\boldsymbol{x})$ : Given an element $x$, adds $x$ to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for $x$ in the data-structure.
- $\boldsymbol{P}$. find $(\boldsymbol{x})$ : Given a handle for an element $x$; find the set that contains $x$. Returns a representative/identifier for this set.


## 9 Union Find

Union Find Data Structure $\mathcal{P}$ : Maintains a partition of disjoint sets over elements.

- P. makeset $(\boldsymbol{x})$ : Given an element $x$, adds $x$ to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for $x$ in the data-structure.
- $\mathcal{P}$. find $(\boldsymbol{x})$ : Given a handle for an element $x$; find the set that contains $x$. Returns a representative/identifier for this set.
- $\boldsymbol{P}$. union $(\boldsymbol{x}, \boldsymbol{y})$ : Given two elements $x$, and $y$ that are currently in sets $S_{x}$ and $S_{y}$, respectively, the function replaces $S_{x}$ and $S_{y}$ by $S_{x} \cup S_{y}$ and returns an identifier for the new set.


## 9 Union Find

## Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.


## 9 Union Find

## Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm


## 9 Union Find

```
Algorithm 16 Kruskal-MST \((G=(V, E), w)\)
    1: \(A \leftarrow \emptyset\);
2: for all \(v \in V\) do
    3: \(\quad v\). set \(\leftarrow \mathcal{P}\). makeset \((v\). label)
    4: sort edges in non-decreasing order of weight \(w\)
    5: for all \((u, v) \in E\) in non-decreasing order do
    6: if \(\mathcal{P}\). find \((u\). set \() \neq \mathcal{P}\). find \((v\). set \()\) then
    7: \(\quad A \leftarrow A \cup\{(u, v)\}\)
    8: \(\quad \mathcal{P}\).union \((u\).set, \(v\).set)
```


## List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.


## List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.



## List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

- makeset $(x)$ can be performed in constant time.


## List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

- makeset $(x)$ can be performed in constant time.
- find $(x)$ can be performed in constant time.


## List Implementation

union $(x, y)$

- Determine sets $S_{x}$ and $S_{y}$.


## List Implementation

union $(x, y)$

- Determine sets $S_{x}$ and $S_{y}$.
- Traverse the smaller list (say $S_{y}$ ), and change all backward pointers to the head of list $S_{x}$.


## List Implementation

union $(x, y)$

- Determine sets $S_{x}$ and $S_{y}$.
- Traverse the smaller list (say $S_{y}$ ), and change all backward pointers to the head of list $S_{x}$.
- Insert list $S_{y}$ at the head of $S_{x}$.


## List Implementation

union $(x, y)$

- Determine sets $S_{x}$ and $S_{y}$.
- Traverse the smaller list (say $S_{y}$ ), and change all backward pointers to the head of list $S_{x}$.
- Insert list $S_{y}$ at the head of $S_{x}$.
- Adjust the size-field of list $S_{x}$.


## List Implementation

union $(x, y)$

- Determine sets $S_{x}$ and $S_{y}$.
- Traverse the smaller list (say $S_{y}$ ), and change all backward pointers to the head of list $S_{x}$.
- Insert list $S_{y}$ at the head of $S_{x}$.
- Adjust the size-field of list $S_{x}$.
- Time: $\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}$.


## List Implementation



## List Implementation



## List Implementation



## List Implementation



## List Implementation

Running times:

- find $(x)$ : constant
- makeset $(x)$ : constant
- union $(x, y): \mathcal{O}(n)$, where $n$ denotes the number of elements contained in the set system.


## List Implementation

## Lemma 1

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find $(x): \mathcal{O}(1)$.
- makeset $(x): \mathcal{O}(\log n)$.
- union $(x, y): \mathcal{O}(1)$.


## The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.


## The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.


## The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.


## The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.


## The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.


## List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.


## List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).


## List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.


## List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.


## List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.


## List Implementation

makeset $(\boldsymbol{x})$ : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

## List Implementation

makeset $(\boldsymbol{x})$ : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find $(x)$ : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

## List Implementation

makeset $(\boldsymbol{x})$ : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find $(x)$ : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union $(x, y)$ :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.


## List Implementation

makeset $(\boldsymbol{x})$ : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find $(x)$ : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union $(x, y)$ :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$.


## List Implementation

makeset $(\boldsymbol{x})$ : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find $(x)$ : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union $(x, y)$ :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$.
- Assume wlog. that $S_{x}$ is the smaller set; let $c$ denote the hidden constant, i.e., the actual cost is at most $c \cdot\left|S_{\chi}\right|$.


## List Implementation

makeset $(\boldsymbol{x})$ : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find $(x)$ : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union $(x, y)$ :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$.
- Assume wlog. that $S_{x}$ is the smaller set; let $c$ denote the hidden constant, i.e., the actual cost is at most $c \cdot\left|S_{x}\right|$.
- Charge $c$ to every element in set $S_{x}$.


## List Implementation

## Lemma 2

An element is charged at most $\left\lfloor\log _{2} n\right\rfloor$ times, where $n$ is the total number of elements in the set system.

## List Implementation

## Lemma 2

An element is charged at most $\left\lfloor\log _{2} n\right\rfloor$ times, where $n$ is the total number of elements in the set system.

Proof.
Whenever an element $x$ is charged the number of elements in $x$ 's set doubles. This can happen at most $\lfloor\log n\rfloor$ times.

## Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.


## Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:


Set system $\{2,5,10,12\},\{3,6,7,8,9,14,17\},\{16,19,23\}$.

## Implementation via Trees

makeset $(x)$

- Create a singleton tree. Return pointer to the root.


## Implementation via Trees

makeset $(x)$

- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.


## Implementation via Trees

makeset ( $\boldsymbol{x}$ )

- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.
find $(x)$
- Start at element $x$ in the tree. Go upwards until you reach the root.


## Implementation via Trees

makeset ( $x$ )

- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.


## find $(x)$

- Start at element $x$ in the tree. Go upwards until you reach the root.
- Time: $\mathcal{O}(\operatorname{level}(x))$, where level $(x)$ is the distance of element $x$ to the root in its tree. Not constant.


## Implementation via Trees

To support union we store the size of a tree in its root.

## Implementation via Trees

To support union we store the size of a tree in its root.
union $(x, y)$

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.


## Implementation via Trees

To support union we store the size of a tree in its root.
union $(x, y)$

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.


## Implementation via Trees

To support union we store the size of a tree in its root.
union $(x, y)$

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.


## Implementation via Trees

To support union we store the size of a tree in its root.
union $(x, y)$

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



## Implementation via Trees

To support union we store the size of a tree in its root.
union $(x, y)$

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



## Implementation via Trees

To support union we store the size of a tree in its root.
union $(x, y)$

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

- Time: constant for $\operatorname{link}(a, b)$ plus two find-operations.


## Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

## Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

## Proof.

- When we attach a tree with root $c$ to become a child of a tree with root $p$, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.


## Implementation via Trees

Lemma 3
The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

## Proof.

- When we attach a tree with root $c$ to become a child of a tree with root $p$, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size(p) may still increase.


## Implementation via Trees

## Lemma 3

The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

## Proof.

- When we attach a tree with root $c$ to become a child of a tree with root $p$, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size( $p$ ) may still increase.
- Hence, at any point in time a tree fulfills $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, for any pair of nodes $(p, c)$, where $p$ is a parent of $c$.


## Implementation via Trees

## Lemma 3

The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

## Proof.

- When we attach a tree with root $c$ to become a child of a tree with root $p$, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size( $p$ ) may still increase.
- Hence, at any point in time a tree fulfills $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, for any pair of nodes $(p, c)$, where $p$ is a parent of $c$.


## Path Compression

find $(x)$ :

- Go upward until you find the root.


## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.


## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.


## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



## Path Compression

## find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



## Path Compression

## find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



## Path Compression

find $(x)$ :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

- Note that the size-fields now only give an upper bound on the size of a sub-tree.


## Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

## Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

## Amortized Analysis

## Definitions:

## Amortized Analysis

## Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at $v$ when $v$ became the child of another node (or the number of nodes if $v$ is the root).

Note that this is the same as the size of $v$ 's subtree in the case that there are no find-operations.

## Amortized Analysis

## Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at $v$ when $v$ became the child of another node (or the number of nodes if $v$ is the root).

Note that this is the same as the size of $v$ 's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor$.


## Amortized Analysis

## Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at $v$ when $v$ became the child of another node (or the number of nodes if $v$ is the root).

Note that this is the same as the size of $v$ 's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor$.
- $\Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}$.


## Amortized Analysis

## Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at $v$ when $v$ became the child of another node (or the number of nodes if $v$ is the root).

Note that this is the same as the size of $v$ 's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor$.
- $\Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}$.


## Lemma 4

The rank of a parent must be strictly larger than the rank of a child.

## Amortized Analysis

## Lemma 5

There are at most $n / 2^{s}$ nodes of ranks.

## Amortized Analysis

## Lemma 5

There are at most $n / 2^{s}$ nodes of ranks.

## Proof.

- Let's say a node $v$ sees node $x$ if $v$ is in $x$ 's sub-tree at the time that $x$ becomes a child.


## Amortized Analysis

## Lemma 5

There are at most $n / 2^{s}$ nodes of ranks.

## Proof.

- Let's say a node $v$ sees node $x$ if $v$ is in $x$ 's sub-tree at the time that $x$ becomes a child.
- A node $v$ sees at most one node of rank $s$ during the running time of the algorithm.


## Amortized Analysis

## Lemma 5

There are at most $n / 2^{s}$ nodes of ranks.

## Proof.

- Let's say a node $v$ sees node $x$ if $v$ is in $x$ 's sub-tree at the time that $x$ becomes a child.
- A node $v$ sees at most one node of rank $s$ during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain $v$ during the running time of the algorithm is a strictly increasing sequence.


## Amortized Analysis

## Lemma 5

There are at most $n / 2^{s}$ nodes of rank $s$.

## Proof.

- Let's say a node $v$ sees node $x$ if $v$ is in $x$ 's sub-tree at the time that $x$ becomes a child.
- A node $v$ sees at most one node of rank $s$ during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain $v$ during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank $s$ node, but every rank $s$ node is seen by at least $2^{s}$ different nodes.


## Amortized Analysis

We define

$$
\operatorname{tow}(i):= \begin{cases}1 & \text { if } i=0 \\ 2^{\operatorname{tow}(i-1)} & \text { otw. }\end{cases}
$$

## Amortized Analysis

We define

$$
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
$$

## Amortized Analysis

We define

$$
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
$$

and

$$
\log ^{*}(n):=\min \{i \mid \operatorname{tow}(i) \geq n\}
$$

## Amortized Analysis

We define

$$
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
$$

and

$$
\log ^{*}(n):=\min \{i \mid \operatorname{tow}(i) \geq n\}
$$

## Theorem 6

Union find with path compression fulfills the following amortized running times:

- makeset $(x): \mathcal{O}\left(\log ^{*}(n)\right)$
- find $(x): \mathcal{O}\left(\log ^{*}(n)\right)$
- union $(x, y): \mathcal{O}\left(\log ^{*}(n)\right)$


## Amortized Analysis

In the following we assume $n \geq 2$.

## Amortized Analysis

In the following we assume $n \geq 2$.
rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.


## Amortized Analysis

In the following we assume $n \geq 2$.
rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.


## Amortized Analysis

In the following we assume $n \geq 2$.
rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)$.


## Amortized Analysis

In the following we assume $n \geq 2$.

## rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)$.
- The maximum non-empty rank group is $\log ^{*}(\lfloor\log n\rfloor) \leq \log ^{*}(n)-1$ (which holds for $n \geq 2$ ).


## Amortized Analysis

In the following we assume $n \geq 2$.

## rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)$.
- The maximum non-empty rank group is $\log ^{*}(\lfloor\log n\rfloor) \leq \log ^{*}(n)-1$ (which holds for $n \geq 2$ ).
- Hence, the total number of rank-groups is at most $\log ^{*} n$.


## Amortized Analysis

## Amortized Analysis

## Accounting Scheme:

- create an account for every find-operation


## Amortized Analysis

## Accounting Scheme:

- create an account for every find-operation
- create an account for every node $v$


## Amortized Analysis

## Accounting Scheme:

- create an account for every find-operation
- create an account for every node $v$

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from $v$ to parent $[v]$ as follows:

## Amortized Analysis

## Accounting Scheme:

- create an account for every find-operation
- create an account for every node $v$

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from $v$ to parent $[v]$ as follows:

- If parent $[v]$ is the root we charge the cost to the find-account.


## Amortized Analysis

## Accounting Scheme:

- create an account for every find-operation
- create an account for every node $v$

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from $v$ to parent $[v]$ as follows:

- If parent $[v]$ is the root we charge the cost to the find-account.
- If the group-number of $\operatorname{rank}(v)$ is the same as that of rank(parent[ $v]$ ) (before starting path compression) we charge the cost to the node-account of $v$.


## Amortized Analysis

## Accounting Scheme:

- create an account for every find-operation
- create an account for every node $v$

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from $v$ to parent $[v]$ as follows:

- If parent $[v]$ is the root we charge the cost to the find-account.
- If the group-number of $\operatorname{rank}(v)$ is the same as that of rank(parent[ $v]$ ) (before starting path compression) we charge the cost to the node-account of $v$.
- Otherwise we charge the cost to the find-account.


## Amortized Analysis

Observations:

## Amortized Analysis

## Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).


## Amortized Analysis

## Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).
- After a node $v$ is charged its parent-edge is re-assigned. The rank of the parent strictly increases.


## Amortized Analysis

## Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).
- After a node $v$ is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to $v$ the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.


## Amortized Analysis

## Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).
- After a node $v$ is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to $v$ the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- The total charge made to a node in rank-group $g$ is at most $\operatorname{tow}(g)-\operatorname{tow}(g-1)-1 \leq \operatorname{tow}(g)$.


## Amortized Analysis

What is the total charge made to nodes?

## Amortized Analysis

## What is the total charge made to nodes?

- The total charge is at most

$$
\sum_{g} n(g) \cdot \operatorname{tow}(g)
$$

where $n(g)$ is the number of nodes in group $g$.

## Amortized Analysis

For $g \geq 1$ we have

$$
n(g)
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
n(g) \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}}
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
n(g) \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}}
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}
\end{aligned}
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2
\end{aligned}
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}
\end{aligned}
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
$$

Hence,

$$
\sum_{g} n(g) \operatorname{tow}(g)
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
$$

Hence,

$$
\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \text { tow }(0)+\sum_{g \geq 1} n(g) \text { tow }(g)
$$

## Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)} .
\end{aligned}
$$

Hence,

$$
\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \operatorname{tow}(0)+\sum_{g \geq 1} n(g) \operatorname{tow}(g) \leq n \log ^{*}(n)
$$

## Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

## Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log ^{*} n$ and add this to the node account of $v$ then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

## Amortized Analysis

## Amortized Analysis

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log ^{*} n$. (Here, we consider the average running time of $m$ operations on at most $n$ elements).

## Amortized Analysis

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log ^{*} n$. (Here, we consider the average running time of $m$ operations on at most $n$ elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

## Amortized Analysis

$$
\begin{gathered}
A(x, y)= \begin{cases}y+1 & \text { if } x=0 \\
A(x-1,1) & \text { if } y=0 \\
A(x-1, A(x, y-1)) & \text { otw. }\end{cases} \\
\alpha(m, n)=\min \{i \geq 1: A(i,\lfloor m / n\rfloor) \geq \log n\}
\end{gathered}
$$

## Amortized Analysis

$$
\begin{gathered}
A(x, y)= \begin{cases}y+1 & \text { if } x=0 \\
A(x-1,1) & \text { if } y=0 \\
A(x-1, A(x, y-1)) & \text { otw. }\end{cases} \\
\alpha(m, n)=\min \{i \geq 1: A(i,\lfloor m / n\rfloor) \geq \log n\}
\end{gathered}
$$

- $A(0, y)=y+1$
- $A(1, y)=y+2$
- $A(2, y)=2 y+3$
- $A(3, y)=2^{y+3}-3$
- $A(4, y)=\underbrace{2^{2^{2^{2}}}}_{y+3 \text { times }}-3$

