# A Fast Matching Algorithm

## **Algorithm 27** Bimatch-Hopcroft-Karp(*G*)

1: *M* ← Ø

2: repeat

let  $\mathcal{P} = \{P_1, \dots, P_k\}$  be maximal set of

vertex-disjoint, shortest augmenting path w.r.t. M. 4:

 $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$ 5:

6: until  $\mathcal{P} = \emptyset$ 

7: **return** *M* 

We call one iteration of the repeat-loop a phase of the algorithm.



11. Apr. 2018 540/551

# **Analysis Hopcroft-Karp**

- Let  $P_1, \ldots, P_k$  be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let  $\ell = |P_i|$ ).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- ightharpoonup Let P be an augmenting path in M'.

### Lemma 2

The set  $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$  contains at least  $(k+1)\ell$  edges.

## **Analysis Hopcroft-Karp**

#### Lemma 1

Given a matching M and a maximal matching  $M^*$  there exist  $|M^*| - |M|$  vertex-disjoint augmenting path w.r.t. M.

#### Proof:

- ▶ Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- ▶ Consider the graph  $G = (V, M \oplus M^*)$ , and mark edges in this graph blue if they are in M and red if they are in  $M^*$ .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains  $k \triangleq |M^*| |M|$  more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.



19 The Hopcroft-Karp Algorithm

11. Apr. 2018 541/551

# **Analysis Hopcroft-Karp**

#### Proof.

Ernst Mayr, Harald Räcke

- ▶ The set describes exactly the symmetric difference between matchings M and  $M' \oplus P$ .
- $\blacktriangleright$  Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least  $\ell$ .

## **Analysis Hopcroft-Karp**

#### Lemma 3

*P* is of length at least  $\ell+1$ . This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

#### Proof.

- ▶ If P does not intersect any of the  $P_1, \ldots, P_k$ , this follows from the maximality of the set  $\{P_1, \ldots, P_k\}$ .
- ▶ Otherwise, at least one edge from *P* coincides with an edge from paths  $\{P_1, \ldots, P_k\}$ .
- This edge is not contained in A.
- ▶ Hence,  $|A| \le k\ell + |P| 1$ .
- ▶ The lower bound on |A| gives  $(k+1)\ell \le |A| \le k\ell + |P| 1$ , and hence  $|P| \ge \ell + 1$ .



19 The Hopcroft-Karp Algorithm

11. Apr. 2018 544/551

# **Analysis Hopcroft-Karp**

### Lemma 4

The Hopcroft-Karp algorithm requires at most  $2\sqrt{|V|}$  phases.

#### Proof.

- After iteration  $|\sqrt{|V|}|$  the length of a shortest augmenting path must be at least  $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$ .
- ▶ Hence, there can be at most  $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

## **Analysis Hopcroft-Karp**

If the shortest augmenting path w.r.t. a matching M has  $\ell$  edges then the cardinality of the maximum matching is of size at most  $|M| + \frac{|V|}{\ell+1}$ .

#### Proof.

The symmetric difference between M and  $M^*$  contains  $|M^*| - |M|$  vertex-disjoint augmenting paths. Each of these paths contains at least  $\ell+1$  vertices. Hence, there can be at most  $\frac{|V|}{\rho_{\perp 1}}$  of them.



19 The Hopcroft-Karp Algorithm

11. Apr. 2018 545/551

# **Analysis Hopcroft-Karp**

#### Lemma 5

One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

construct a "level graph" G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2

Ernst Mayr, Harald Räcke

stop when a level (apart from Level 0) contains a free vertex can be done in time  $\mathcal{O}(m)$  by a modified BFS

# **Analysis Hopcroft-Karp**

- ▶ a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

19 The Hopcroft-Karp Algorithm

11. Apr. 2018 548/551

## **Analysis: Shortest Augmenting Path for Flows**

## cost for searches during a phase is O(mn)

- ightharpoonup a search (successful or unsuccessful) takes time O(n)
- ▶ a search deletes at least one edge from the level graph

### there are at most n phases

Time:  $\mathcal{O}(mn^2)$ .

# **Analysis Hopcroft-Karp**

See lecture versions of the slides.

# **Analysis for Unit-capacity Simple Networks**

## cost for searches during a phase is O(m)

an edge/vertex is traversed at most twice

## need at most $\mathcal{O}(\sqrt{n})$ phases

- after  $\sqrt{n}$  phases there is a cut of size at most  $\sqrt{n}$  in the residual graph
- hence at most  $\sqrt{n}$  additional augmentations required

Time:  $\mathcal{O}(m\sqrt{n})$ .

Ernst Mayr, Harald Räcke