A Fast Matching Algorithm

```
Algorithm 27 Bimatch-Hopcroft-Karp(G)
    M\leftarrow\emptyset
    repeat
        let \mathcal{P}={\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{k}{}}\mathrm{ be maximal set of}\=\mp@code{l}
        vertex-disjoint, shortest augmenting path w.r.t. M.
        M\leftarrowM\oplus(P
    until }\mathcal{P}=
    return M
```

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis Hopcroft-Karp

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).
- M^{\prime} 墅 $M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.
- Let P be an augmenting path in M^{\prime}.

Lemma 2

The set $A \stackrel{\text { def }}{=} M \oplus\left(M^{\prime} \oplus P\right)=\left(P_{1} \cup \cdots \cup P_{k}\right) \oplus P$ contains at least $(k+1) \ell$ edges.

Analysis Hopcroft-Karp

Lemma 1
Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.
- The graph contains $k \stackrel{\text { def }}{=}\left|M^{*}\right|-|M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Ernst Mayr, Harald Räcke	19 The Hopcroft-Karp Algorithm	$\begin{array}{r} 11 . \text { Apr. } 2018 \\ 541 / 551 \end{array}$

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.
- Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $\left|M^{\prime}\right|=|M|+k+1$.
- Each of these paths is of length at least ℓ.

Analysis Hopcroft-Karp

Lemma 3

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell+|P|-1$.
- The lower bound on $|A|$ gives $(k+1) \ell \leq|A| \leq k \ell+|P|-1$, and hence $|P| \geq \ell+1$.

	19 The Hopcroft-Karp Algorithm	11. Apr. 2018
$544 / 551$		

Analysis Hopcroft-Karp

Lemma 4
The Hopcroft-Karp algorithm requires at most $2 \sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor\sqrt{|V|}\rfloor$ the length of a shortest augmenting path must be at least $\lfloor\sqrt{|V|}\rfloor+1 \geq \sqrt{|V|}$.
- Hence, there can be at most $|V| /(\sqrt{|V|}+1) \leq \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^{*} contains $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis Hopcroft-Karp

Lemma 5

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.
construct a "level graph" G^{\prime}

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ...
- stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

Analysis Hopcroft-Karp a shortest augmenting path must go from Level 0 to the last layer constructed - it can only use edges between layers - construct a maximal set of vertex disjoint augmenting path connecting the layers - for this, go forward until you either reach a free vertex or you reach a "dead end" v - if you reach a free vertex delete the augmenting path and all incident edges from the graph if you reach a dead end backtrack and delete v together with its incident edges

a shortest augmenting path must go from Level 0 to the last layer constructed

- it can only use edges between layers
construct a maximal set of vertex disjoint augmenting path layers you reach a "dead end" v
if you reach a free vertex delete the augmenting path and al incident edges from the graph
if you reach a dead end backtrack and delete v together with its incident edges

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is $\mathcal{O}(\boldsymbol{m n})$

- a search (successful or unsuccessful) takes time $\mathcal{O}(n)$
- a search deletes at least one edge from the level graph

there are at most \boldsymbol{n} phases

Time: $\mathcal{O}\left(m n^{2}\right)$.

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is $\boldsymbol{\mathcal { O }}(\boldsymbol{m})$

- an edge/vertex is traversed at most twice

need at most $\mathcal{O}(\sqrt{\boldsymbol{n}})$ phases

- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m \sqrt{n})$.

