4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
- Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}\left(n^{2}\right)$ ".
- Typically focuses on the worst case.
- Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, \ldots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form $x x$, where x is a string, have quadratic lower bound.
\Rightarrow Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.
- Registers hold integers.
- Indirect addressing.

[^0]

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$
- $R[j]:=4$
- indirect addressing
- $R[j]:=R[R[i]]$ loads the content of the $R[i]$-th register into the j-th register
- $R[R[i]]:=R[j]$
loads the content of the j-th into the $R[i]$-th register

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$
- jumpz $x R[i]$
jump to x if $R[i]=0$
if not the instruction counter is increased by 1 ;
- jumpi i
jump to $R[i]$ (indirect jump);
- arithmetic instructions:,,$+- \times, /$
- $R[i]:=R[j]+R[k]$;
$R[i]:=-R[k] ;$

The jump-directives are very close to the jump-instructions contained in the as-
' sembler language of real machines.

Model of Computation

- uniform cost model

Every operation takes time 1.

- logarithmic cost model

The cost depends on the content of memory cells:

- The time for a step is equal to the largest operand involved;
- The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^{w}, where usually $w=\log _{2} n$.

The latter model is quite realistic as the word-size of
i a standard computer that handles a problem of size n,
' must be at least $\log _{2} n$ as otherwise the computer could '
' either not store the problem instance or not address all '
its memory.

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring (n)
1: $r \leftarrow 2$;
2: for $i=1 \rightarrow n$ do
3: $\quad r \leftarrow r^{2}$
4: return r

- running time:
- uniform model: n steps
- logarithmic model: $1+2+4+\cdots+2^{n}=2^{n+1}-1=\Theta\left(2^{n}\right)$
- space requirement:
- uniform model: $\mathcal{O}(1)$
- logarithmic model: $\mathcal{O}\left(2^{n}\right)$

There are different types of complexity bounds:

- best-case complexity:

$$
C_{\mathrm{bc}}(n):=\min \{C(x)| | x \mid=n\}
$$

Usually easy to analyze, but not very meaningful.

- worst-case complexity:

$$
C_{\mathrm{Wc}}(n):=\max \{C(x)| | x \mid=n\}
$$

Usually moderately easy to analyze; sometimes too pessimistic.

- average case complexity:

$$
C_{\operatorname{avg}}(n):=\frac{1}{\left|I_{n}\right|} \sum_{|x|=n} C(x)
$$

more general: probability measure μ

$$
C_{\mathrm{avg}}(n):=\sum_{x \in I_{n}} \mu(x) \cdot C(x)
$$

$C(x)$	cost of instance x
$\|x\|$input length of instance x	
In set of instances of length n -	

There are different types of complexity bounds:

- amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

- randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input
x. Then take the worst-case over all x with $|x|=n$.

| $C(x)$cost of instance
 x |
| :--- | :--- |
| $\|x\|$input length of
 instance x |
| I_{n}set of instances
 of length n |
| $-l_{-}$ |

4 Modelling Issues

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009
Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.

[^0]: Note that in the picture on the right ' the tapes are one-directional, and that a READ- or WRITE-operation always advances its tape.

