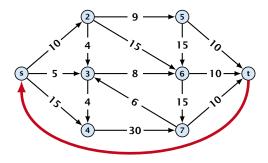
Problem Definition:

min $\sum_{e} c(e) f(e)$ s.t. $\forall e \in E: 0 \le f(e) \le u(e)$ $\forall v \in V: f(v) = b(v)$

- G = (V, E) is a directed graph.
- $u: E \to \mathbb{R}^+_0 \cup \{\infty\}$ is the capacity function.
- $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

11. Apr. 2018 482/503

Solve Maxflow Using Mincost Flow



- Given a flow network for a standard maxflow problem.
- Set b(v) = 0 for every node. Keep the capacity function u for all edges. Set the cost c(e) for every edge to 0.
- Add an edge from t to s with infinite capacity and cost -1.
- Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{min} is a mincost-flow.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- Set b(v) = 0 for every node apart from s or t. Set b(s) = −k and b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value at least k if and only if the mincost-flow problem is feasible.

Generalization

Our model:

$$\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ 0 \le f(e) \le u(e) \\ & \forall v \in V : \ f(v) = b(v) \end{array}$$

where $b: V \to \mathbb{R}$, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}^+_0 \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$
 $\forall v \in V : a(v) \le f(v) \le b(v)$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

Generalization

Differences

- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound u(e).
- The demand at a node v may have lower bound a(v) and upper bound b(v) instead of just lower bound = upper bound = b(v).

Reduction I

$$\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ \ell(e) \le f(e) \le u(e) \\ & \forall v \in V : \ a(v) \le f(v) \le b(v) \end{array}$$

We can assume that a(v) = b(v):

Add new node r.

Add edge (r, v) for all $v \in V$.

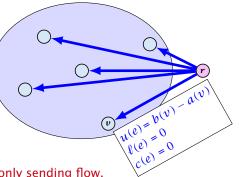
Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$.

Set $b(r) = -\sum_{v \in V} b(v)$.

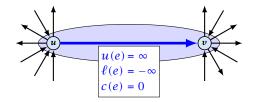
 $-\sum_{v} b(v)$ is negative; hence r is only sending flow.



Reduction II

$$\begin{array}{ll} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E : \ \ell(e) \leq f(e) \leq u(e) \\ & \forall v \in V : \ f(v) = b(v) \end{array}$$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:

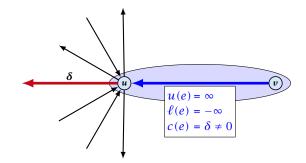


If c(e) = 0 we can contract the edge/identify nodes u and v.

If $c(e) \neq 0$ we can transform the graph so that c(e) = 0.

Reduction II

We can transform any network so that a particular edge has cost c(e) = 0:



Additionally we set b(u) = 0.

14 Mincost Flow

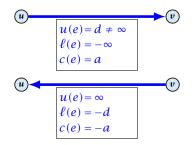
11. Apr. 2018 489/503

Reduction III

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$
 $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) \neq -\infty$:



Replace the edge by an edge in opposite direction.

14 Mincost Flow

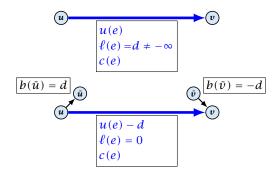
11. Apr. 2018 490/503

Reduction IV

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$
 $\forall v \in V : f(v) = b(v)$

We can assume that $\ell(e) = 0$:



The added edges have infinite capacity and cost c(e)/2.

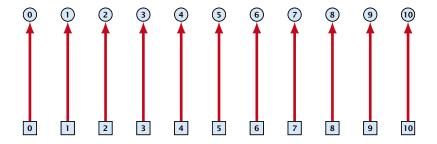
14 Mincost Flow

11. Apr. 2018 491/503

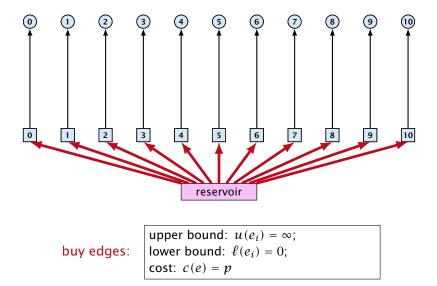
Applications

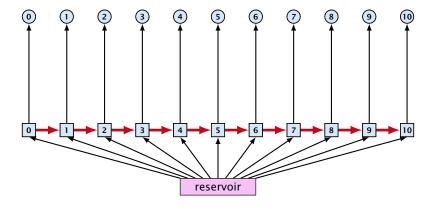
Caterer Problem

- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at *p* cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.



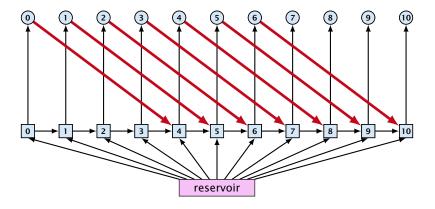
day edges: upper bound: $u(e_i) = \infty$; lower bound: $\ell(e_i) = r_i$; cost: c(e) = 0





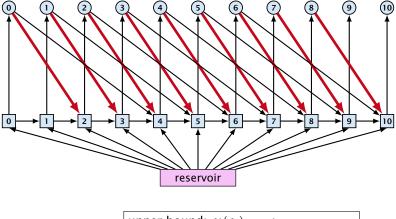
forward edges:

upper bound: $u(e_i) = \infty$; lower bound: $\ell(e_i) = 0$; cost: c(e) = 0



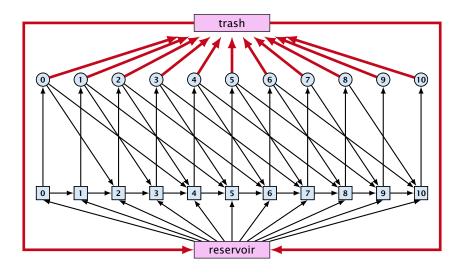
slow edges:

upper bound: $u(e_i) = \infty$; lower bound: $\ell(e_i) = 0$; cost: c(e) = s



fast edges:

upper bound: $u(e_i) = \infty$; lower bound: $\ell(e_i) = 0$; cost: c(e) = f



trash edges:

upper bound: $u(e_i) = \infty$; lower bound: $\ell(e_i) = 0$; cost: c(e) = 0

Residual Graph

Version A:

The residual graph G' for a mincost flow is just a copy of the graph G.

If we send f(e) along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to $\ell(e') = \ell(e) - f(e)$ and u(e') = u(e) - f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u, v)).

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of *G*.

Lemma 1

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f* be a min-cost flow.
 We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

For previous slide: $g = f^* - f$ is obtained by computing $\Delta(e) = f^*(e) - f(e)$ for every edge e = (u, v). If the result is positive set $g((u, v)) = \Delta(e)$ and g((v, u)) = 0. Otherwise set g((u, v)) = 0 and $g((v, u)) = -\Delta(e)$.

Lemma 2

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

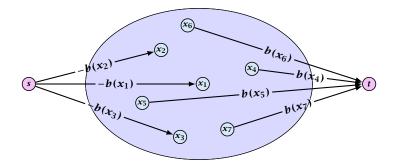
Algorithm 23 CycleCanceling(G = (V, E), c, u, b)

- 1: establish a feasible flow f in G
- 2: while G_f contains negative cycle do
- 3: use Bellman-Ford to find a negative circuit Z

4:
$$\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$$

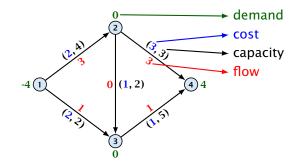
5: augment δ units along Z and update G_f

How do we find the initial feasible flow?

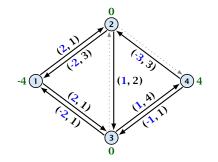


- Connect new node s to all nodes with negative b(v)-value.
- Connect nodes with positive b(v)-value to a new node t.
- There exist a feasible flow in the original graph iff in the resulting graph there exists an *s*-*t* flow of value

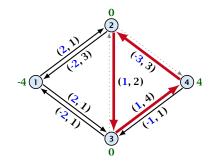
$$\sum_{\nu:b(\nu)<0} (-b(\nu)) = \sum_{\nu:b(\nu)>0} b(\nu) \; .$$



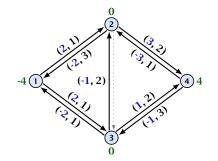
14 Mincost Flow



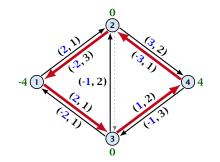
14 Mincost Flow



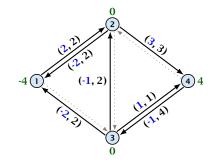
14 Mincost Flow



14 Mincost Flow



14 Mincost Flow



14 Mincost Flow

Lemma 3

The improving cycle algorithm runs in time $\mathcal{O}(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \leq C$ and $|u(e)| \leq U$.

- Running time of Bellman-Ford is $\mathcal{O}(mn)$.
- Pushing flow along the cycle can be done in time $\mathcal{O}(n)$.
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval [-mCU, ..., +mCU].

Note that this lemma is weak since it does not allow for edges with infinite capacity.

A general mincost flow problem is of the following form:

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E : \ell(e) \le f(e) \le u(e)$
 $\forall v \in V : a(v) \le f(v) \le b(v)$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

Lemma 4 (without proof)

A general mincost flow problem can be solved in polynomial time.

14 Mincost Flow