How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

The cycle $w \leftrightarrow y-x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path $u-w$ is called the stem of the blossom.

Flowers and Blossoms

Definition 1

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

Flowers and Blossoms

Definition 1

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).

Flowers and Blossoms

Definition 1

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Flowers and Blossoms

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \backslash B$ that had at least one edge to a vertex from B.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Example: Blossom Algorithm

18 Maximum Matching in General Graphs

Example: Blossom Algorithm

18 Maximum Matching in General Graphs

Example: Blossom Algorithm

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Lemma 2

If G^{\prime} contains an augmenting path P^{\prime} starting at r (or the pseudo-node containing r) w.r.t. the matching M^{\prime} then G contains an augmenting path starting at r w.r.t. matching M.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_{2} from w to k that ends in a matching edge.
- $P_{1} \circ(i, w) \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.
- If $k=w$ then $P_{1} \circ(i, w) \circ(w, \ell) \circ P_{3}$ is an alternating path.

Correctness

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

Correctness

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

Correctness

Proof.
Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

Correctness

Proof.
Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

- The path $r \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.

Correctness

Lemma 3

If G contains an augmenting path P from r to q w.r.t. matching M then G^{\prime} contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M^{\prime}.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.
$(b, j) \circ P_{2}$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:

Correctness

Case 2: non-empty stem

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

This path must go between r and q.

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

Search for an augmenting path starting at r.

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

$A(i)$ contains neighbours of node i. We create a copy $\bar{A}(i)$ so that we later can shrink blossoms.

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found \leftarrowfalse
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list # \emptyset do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

found is just a Boolean that allows to abort the search process...

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

In the beginning no node is in the tree.

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

Put the root in the tree. list could also be a set or a stack.

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

As long as there are nodes with unexamined neighbours...

```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

 ...examine the next one
    ```
Algorithm 24 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

If you found augmenting path abort and start from next root.

```
Algorithm 25 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

Examine the neighbours of a node i

```
Algorithm 25 examine( \(i\), found \()\)
for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

For all neighbours j do...

```
Algorithm 25 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

You have found a blossom...

```
Algorithm 25 examine( \(i\), found)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
3: if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

You have found a free node which gives you an augmenting path.

```
Algorithm 25 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

If you find a matched node that is not in the tree you grow...

```
Algorithm 25 examine(i,found)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate \((j)\) to list
```

mate (j) is a new node from which you can grow further.

Algorithm 26 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Contract blossom identified by nodes i and j

```
Algorithm 26 contract(i,j)
    1: trace pred-indices of i and j to identify a blossom B
    2: create new node b and set }\overline{A}(b)\leftarrow\mp@subsup{\cup}{x\inB}{}\overline{A}(x
    3: label b even and add to list
    4: update }\overline{A}(j)\leftarrow\overline{A}(j)\cup{b}\mathrm{ for each }j\in\overline{A}(b
    5: form a circular double linked list of nodes in B
    6: delete nodes in B from the graph
```

Get all nodes of the blossom.
Time: $\mathcal{O}(m)$

Algorithm 26 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Identify all neighbours of b.
Time: $\mathcal{O}(m)$ (how?)

Algorithm 26 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
b will be an even node, and it has unexamined neighbours.

Algorithm 26 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Every node that was adjacent to a node in B is now adjacent to b

Algorithm 26 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Only for making a blossom expansion easier.

Algorithm 26 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Only delete links from nodes not in B to B.
When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$
n \cdot(\mathcal{O}(m n)+\mathcal{O}(n))=\mathcal{O}\left(m n^{2}\right)
$$

Example: Blossom Algorithm

