Part V

Matchings

Matching

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.
- Shortest augmenting path: $\mathcal{O}\left(m n^{2}\right)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m \sqrt{n})$.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

As $\left|M^{\prime}\right|>|M|$ there is one connected component that is a path P for which both endpoints are incident to edges from $M^{\prime} . P$ is an alternating path.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M^{\prime}=M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M^{\prime}.

[^0]
17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.
$-P_{1} \circ P_{1}^{\prime}$ is augmenting path in $M(z)$.

How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

Case 1:
y is free vertex not contained in T
you found alternating path

How to find an augmenting path?

Construct an alternating tree.

17 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3: y is already contained in T as an odd vertex
ignore successor y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y
does not happen in bipartite graphs

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug ↔ true;
        free - free - 1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18:
        \(Q\). enqueue( mate[ \(y]\) );
```

The lecture slides contain a istep bv step

$$
\operatorname{graph} G=\left(S \cup S^{\prime}, E\right)
$$

$$
\begin{aligned}
S & =\{1, \ldots, n\} \\
S^{\prime} & =\left\{1^{\prime}, \ldots, n^{\prime}\right\}
\end{aligned}
$$

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

The cycle $w \leftrightarrow y-x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path $u-w$ is called the stem of the blossom.

Flowers and Blossoms

Definition 3

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Flowers and Blossoms

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \backslash B$ that had at least one edge to a vertex from B.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the
lecture version of the slides.

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Lemma 4

If G^{\prime} contains an augmenting path P^{\prime} starting at r (or the pseudo-node containing r) w.r.t. the matching M^{\prime} then G contains an augmenting path starting at r w.r.t. matching M.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_{2} from w to k that ends in a matching edge.
- $P_{1} \circ(i, w) \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.
- If $k=w$ then $P_{1} \circ(i, w) \circ(w, \ell) \circ P_{3}$ is an alternating path.

Correctness

Proof.
Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

- The path $r \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.

Correctness

Lemma 5

If G contains an augmenting path P from r to q w.r.t. matching M then G^{\prime} contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M^{\prime}.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.
$(b, j) \circ P_{2}$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

This path must go between r and q.

Algorithm 25 search (r, found) explanation.
1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
2: found \leftarrow false
3: unlabel all nodes;
4: give an even label to r and initialize list $\leftarrow\{r\}$
5: while list $\neq \emptyset$ do
6: \quad delete a node i from list
7: examine(i,found)
8: \quad if found $=$ true then return

Search for an augmenting path starting at r.

```
Algorithm 26 examine(i,found)
2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
3: \(\quad\) if \(j\) is unmatched then
4: \(\quad q \leftarrow j\);
5: \(\quad \operatorname{pred}(q) \leftarrow i\);
6: found \(\leftarrow\) true;
7: return
8: \(\quad\) if \(j\) is matched and unlabeled then
9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

slides contain a
step by step
, explanation.

Examine the neighbours of a node i

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Contract blossom identified by nodes i and j

```
Algorithm 27 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

Get all nodes of the blossom.
Time: $\mathcal{O}(m)$

Algorithm 27 contract (i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Identify all neighbours of b.
Time: $\mathcal{O}(m)$ (how?)

Algorithm 27 contract (i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
b will be an even node, and it has unexamined neighbours.

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Every node that was adjacent to a node in B is now adjacent to b

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Only for making a blossom expansion easier.

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Only delete links from nodes not in B to B.
When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$
n \cdot(\mathcal{O}(m n)+\mathcal{O}(n))=\mathcal{O}\left(m n^{2}\right)
$$

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the
lecture version of the slides.

A Fast Matching Algorithm

```
Algorithm 28 Bimatch-Hopcroft-Karp \((G)\)
    1: \(M \leftarrow \emptyset\)
    2: repeat
    3: \(\quad\) let \(\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}\) be maximal set of
    4: \(\quad\) vertex-disjoint, shortest augmenting path w.r.t. \(M\).
    5: \(\quad M \leftarrow M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)\)
    6: until \(\mathcal{P}=\emptyset\)
    7: return \(M\)
```

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis Hopcroft-Karp

Lemma 6

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.
- The graph contains $k \stackrel{\text { def }}{=}\left|M^{*}\right|-|M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Analysis Hopcroft-Karp

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).
- $M^{\prime} \xlongequal{\text { def }} M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.
- Let P be an augmenting path in M^{\prime}.

Lemma 7
The set $A \stackrel{\text { def }}{=} M \oplus\left(M^{\prime} \oplus P\right)=\left(P_{1} \cup \cdots \cup P_{k}\right) \oplus P$ contains at least $(k+1) \ell$ edges.

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.
- Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $\left|M^{\prime}\right|=|M|+k+1$.
- Each of these paths is of length at least ℓ.

Analysis Hopcroft-Karp

Lemma 8

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell+|P|-1$.
- The lower bound on $|A|$ gives $(k+1) \ell \leq|A| \leq k \ell+|P|-1$, and hence $|P| \geq \ell+1$.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^{*} contains $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis Hopcroft-Karp

Lemma 9

The Hopcroft-Karp algorithm requires at most $2 \sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor\sqrt{|V|}\rfloor$ the length of a shortest augmenting path must be at least $\lfloor\sqrt{|V|}\rfloor+1 \geq \sqrt{|V|}$.
- Hence, there can be at most $|V| /(\sqrt{|V|}+1) \leq \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

Lemma 10

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.
construct a "level graph" G^{\prime} :

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ...
- stop when a level (apart from Level 0) contains a free vertex
can be done in time $\mathcal{O}(m)$ by a modified BFS

Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

Analysis Hopcroft-Karp

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is $\mathcal{O}(\mathbf{m n})$

- a search (successful or unsuccessful) takes time $\mathcal{O}(n)$
- a search deletes at least one edge from the level graph
there are at most \boldsymbol{n} phases
Time: $\mathcal{O}\left(m n^{2}\right)$.

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is $\mathcal{O}(\boldsymbol{m})$

- an edge/vertex is traversed at most twice
need at most $\mathcal{O}(\sqrt{ } \sqrt{\boldsymbol{n}})$ phases
- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m \sqrt{n})$.

[^0]: 'The above theorem allows for an easier implementation of an augment-'
 'ing path algorithm. Once we checked for augmenting paths starting '
 ' from u we don't have to check for such paths in future rounds.

