WS 2017/18

Efficient Algorithms and Data Structures

Harald Räcke

Fakultät für Informatik
TU München
http://www14.in.tum.de/1ehre/2017WS/ea/

Winter Term 2017/18

Part I

Organizational Matters

Part I

Organizational Matters

- Modul: IN2003

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim2)

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim2)

- Webpage: http://www14.in.tum.de/1ehre/2017WS/ea/
- Required knowledge:
- Required knowledge:
- INOOOI, INOOO3
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- Required knowledge:
- IN0001, IN0003
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures"
"Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- Required knowledge:
- INOOO1, IN0003
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures"
"Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- Required knowledge:
- INOOO1, IN0003
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures"
"Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- IN0015
"Discrete Structures"
"Diskrete Strukturen" (DS)
- Required knowledge:
- INOOO1, IN0003
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures"
"Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- IN0015
"Discrete Structures"
"Diskrete Strukturen" (DS)
- INOO18
"Discrete Probability Theory"
"Diskrete Wahrscheinlichkeitstheorie" (DWT)

The Lecturer

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (by appointment)

Tutorials

A01 Monday, 12:00-14:00, 00.08.038 (Schmid)
A02 Monday, 12:00-14:00, 00.09.038 (Stotz)
A03 Monday, 14:00-16:00, 02.09.023 (Liebl)
B04 Tuesday, 10:00-12:00, 00.08.053 (Schmid)
B05 Tuesday, 12:00-14:00, 03.11.018 (Kraft)
B06 Tuesday, 14:00-16:00, 00.08.038 (Somogyi)
D07 Thursday, 10:00-12:00, 03.11.018 (Liebl)
E08 Friday, 12:00-14:00, 00.13.009 (Stotz)
E09 Friday, 14:00-16:00, 00.13.009 (Kraft)

Assignment sheets

In order to pass the module you need to pass an exam.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.
- You can submit solutions in groups of up to 2 people.

Assessment

Assignment Sheets:

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.

Assessment

Assignment Sheets:

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.
- Don't forget name and student id number for each group member.

Assessment

Assignment can be used to improve you grade

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$
- $3.7 \rightarrow 3.3$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$
$\rightarrow 3.7 \rightarrow 3.3$
- $1.0 \rightarrow 1.0$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$
- $3.7 \rightarrow 3.3$
- $1.0 \rightarrow 1.0$
- > 4.0 no improvement

Assessment

Requirements for Bonus

- 50\% of the points are achieved on submissions 2-8,
- 50% of the points are achieved on submissions $9-14$,
- each group member has written at least 4 solutions.

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
- Search trees
- Hashing
- Priority queues
- Union/Find data structures

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
- Search trees
- Hashing
- Priority queues
- Union/Find data structures
- Cuts/Flows

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
- Search trees
- Hashing
- Priority queues
- Union/Find data structures
- Cuts/Flows
- Matchings

2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The design and analysis of computer algorithms, Addison-Wesley Publishing Company: Reading (MA), 1974
Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms,
McGraw-Hill, 1990
Michael T. Goodrich, Roberto Tamassia:
Algorithm design: Foundations, analysis, and internet
examples,
John Wiley \& Sons, 2002

2 Literatur

Ronald L．Graham，Donald E．Knuth，Oren Patashnik：
Concrete Mathematics，
2．Auflage，Addison－Wesley， 1994
周 Volker Heun：
Grundlegende Algorithmen：Einführung in den Entwurf und die Analyse effizienter Algorithmen，
2．Auflage，Vieweg， 2003
圊 Jon Kleinberg，Eva Tardos：
Algorithm Design，
Addison－Wesley， 2005
嗇 Donald E．Knuth：
The art of computer programming．Vol．1：Fundamental Algorithms，
3．Auflage，Addison－Wesley， 1997

2 Literatur

图 Donald E．Knuth：
The art of computer programming．Vol．3：Sorting and
Searching，
3．Auflage，Addison－Wesley， 1997
Christos H．Papadimitriou，Kenneth Steiglitz：
Combinatorial Optimization：Algorithms and Complexity，
Prentice Hall， 1982
圊 Uwe Schöning：
Algorithmik，
Spektrum Akademischer Verlag， 2001
囯 Steven S．Skiena：
The Algorithm Design Manual，
Springer， 1998

Part II

Foundations

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.

4 Modelling Issues

What do you measure?

- Memory requirement

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
- Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}\left(n^{2}\right)$ ".

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
- Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}\left(n^{2}\right)$ ".
- Typically focuses on the worst case.

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
- Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}\left(n^{2}\right)$ ".
- Typically focuses on the worst case.
- Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, \ldots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Model of Computation

How to measure performance

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Turing Machine

- Very simple model of computation.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form $x x$, where x is a string, have quadratic lower bound.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form $x x$, where x is a string, have quadratic lower bound.
\Rightarrow Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.

[^0]

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.
- Registers hold integers.

[^1]

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.
- Registers hold integers.
- Indirect addressing.

[^2]

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$
- $R[j]:=4$

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$
- $R[j]:=4$
- indirect addressing

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$
- $R[j]:=4$
- indirect addressing
- $R[j]:=R[R[i]]$
loads the content of the $R[i]$-th register into the j-th register

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$
- $R[j]:=4$
- indirect addressing
- $R[j]:=R[R[i]]$ loads the content of the $R[i]$-th register into the j-th register
- $R[R[i]]:=R[j]$
loads the content of the j-th into the $R[i]$-th register

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons

The jump-directives are very close to the
' jump-instructions contained in the as- !
' sembler language of real machines.

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x
jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$
- jumpz $\times R[i]$
jump to x if $R[i]=0$
if not the instruction counter is increased by 1 ;

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$
- jumpz $\times R[i]$
jump to x if $R[i]=0$
if not the instruction counter is increased by 1 ;
- jumpi i
jump to $R[i]$ (indirect jump);

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$
- jumpz $x R[i]$
jump to x if $R[i]=0$
if not the instruction counter is increased by 1 ;
- jumpi i
jump to $R[i]$ (indirect jump);
- arithmetic instructions:,,$+- \times, /$

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register $R[x]$
- jumpz $x R[i]$
jump to x if $R[i]=0$
if not the instruction counter is increased by 1 ;
- jumpi i
jump to $R[i]$ (indirect jump);
- arithmetic instructions:,,$+- \times, /$
- $R[i]:=R[j]+R[k]$;
$R[i]:=-R[k] ;$

The jump-directives are very close to the jump-instructions contained in the as-
' sembler language of real machines.

Model of Computation

- uniform cost model Every operation takes time 1.
'The latter model is quite realistic as the word-size of a standard computer that handles a problem of size n; ' must be at least $\log _{2} n$ as otherwise the computer could ' either not store the problem instance or not address all its memory.

Model of Computation

- uniform cost model

Every operation takes time 1.

- logarithmic cost model

The cost depends on the content of memory cells:

Model of Computation

- uniform cost model

Every operation takes time 1.

- logarithmic cost model

The cost depends on the content of memory cells:

- The time for a step is equal to the largest operand involved;

```
The latter model is quite realistic as the word-size of 
, a standard computer that handles a problem of size n ,
'must be at least }\mp@subsup{\operatorname{log}}{2}{}n\mathrm{ as otherwise the computer could '
 either not store the problem instance or not address all 
its memory.
```


Model of Computation

- uniform cost model

Every operation takes time 1.

- logarithmic cost model

The cost depends on the content of memory cells:

- The time for a step is equal to the largest operand involved;
- The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

```
IThe latter model is quite realistic as the word-size of 
, a standard computer that handles a problem of size n ,
'must be at least }\mp@subsup{\operatorname{log}}{2}{}n\mathrm{ as otherwise the computer could '
 either not store the problem instance or not address all 
its memory.
```


Model of Computation

- uniform cost model

Every operation takes time 1.

- logarithmic cost model

The cost depends on the content of memory cells:

- The time for a step is equal to the largest operand involved;
- The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^{w}, where usually $w=\log _{2} n$.

The latter model is quite realistic as the word-size of
a standard computer that handles a problem of size n;
' must be at least $\log _{2} n$ as otherwise the computer could '
' either not store the problem instance or not address all '
its memory.

4 Modelling Issues

Example 2

```
Algorithm 1 RepeatedSquaring ( \(n\) )
1: \(r \leftarrow 2\);
2: for \(i=1 \rightarrow n\) do
3: \(\quad r \leftarrow r^{2}\)
4: return \(r\)
```


4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring (n)
1: $r \leftarrow 2$;
2: for $i=1 \rightarrow n$ do
3: $\quad r \leftarrow r^{2}$
4: return r

- running time:

4 Modelling Issues

Example 2

```
Algorithm 1 RepeatedSquaring ( \(n\) )
1: \(r \leftarrow 2\);
2: for \(i=1 \rightarrow n\) do
3: \(\quad r \leftarrow r^{2}\)
4: return \(r\)
```

- running time:
- uniform model: n steps

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring (n)
1: $r \leftarrow 2$;
2: for $i=1 \rightarrow n$ do
3: $\quad r \leftarrow r^{2}$
4: return r

- running time:
- uniform model: n steps
- logarithmic model: $1+2+4+\cdots+2^{n}=2^{n+1}-1=\Theta\left(2^{n}\right)$

4 Modelling Issues

Example 2

$$
\begin{aligned}
& \text { Algorithm } 1 \text { RepeatedSquaring }(n) \\
& \text { 1: } r \leftarrow 2 ; \\
& \text { 2: for } i=1 \rightarrow n \text { do } \\
& \text { 3: } \quad r \leftarrow r^{2} \\
& \text { 4: return } r
\end{aligned}
$$

- running time:
- uniform model: n steps
- logarithmic model: $1+2+4+\cdots+2^{n}=2^{n+1}-1=\Theta\left(2^{n}\right)$
- space requirement:

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring (n)
1: $r \leftarrow 2$;
2: for $i=1 \rightarrow n$ do
3: $\quad r \leftarrow r^{2}$
4: return r

- running time:
- uniform model: n steps
- logarithmic model: $1+2+4+\cdots+2^{n}=2^{n+1}-1=\Theta\left(2^{n}\right)$
- space requirement:
- uniform model: $\mathcal{O}(1)$

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring (n)
1: $r \leftarrow 2$;
2: for $i=1 \rightarrow n$ do
3: $\quad r \leftarrow r^{2}$
4: return r

- running time:
- uniform model: n steps
- logarithmic model: $1+2+4+\cdots+2^{n}=2^{n+1}-1=\Theta\left(2^{n}\right)$
- space requirement:
- uniform model: $\mathcal{O}(1)$
- logarithmic model: $\mathcal{O}\left(2^{n}\right)$

There are different types of complexity bounds:

- best-case complexity:

$$
C_{\mathrm{bc}}(n):=\min \{C(x)| | x \mid=n\}
$$

Usually easy to analyze, but not very meaningful.

$C(x)$	cost of instance x
$\|x\|$input length of instance x	
set of instances of length n	
	-

There are different types of complexity bounds:

- best-case complexity:

$$
C_{\mathrm{bc}}(n):=\min \{C(x)| | x \mid=n\}
$$

Usually easy to analyze, but not very meaningful.

- worst-case complexity:

$$
C_{\mathrm{Wc}}(n):=\max \{C(x)| | x \mid=n\}
$$

Usually moderately easy to analyze; sometimes too pessimistic.
$C(x)$
x

There are different types of complexity bounds:

- best-case complexity:

$$
C_{\mathrm{bc}}(n):=\min \{C(x)| | x \mid=n\}
$$

Usually easy to analyze, but not very meaningful.

- worst-case complexity:

$$
C_{\mathrm{Wc}}(n):=\max \{C(x)| | x \mid=n\}
$$

Usually moderately easy to analyze; sometimes too pessimistic.

- average case complexity:

$$
C_{\operatorname{avg}}(n):=\frac{1}{\left|I_{n}\right|} \sum_{|x|=n} C(x)
$$

$\mid x(x)$	cost of instance instance x
set of instances of length n	
	-

There are different types of complexity bounds:

- best-case complexity:

$$
C_{\mathrm{bc}}(n):=\min \{C(x)| | x \mid=n\}
$$

Usually easy to analyze, but not very meaningful.

- worst-case complexity:

$$
C_{\mathrm{Wc}}(n):=\max \{C(x)| | x \mid=n\}
$$

Usually moderately easy to analyze; sometimes too pessimistic.

- average case complexity:

$$
C_{\operatorname{avg}}(n):=\frac{1}{\left|I_{n}\right|} \sum_{|x|=n} C(x)
$$

more general: probability measure μ

$$
C_{\mathrm{avg}}(n):=\sum_{x \in I_{n}} \mu(x) \cdot C(x)
$$

$C(x)$	cost of instance x
$\|x\|$input length of instance x	
In set of instances of length n -	

There are different types of complexity bounds:

- amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

There are different types of complexity bounds:

- amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

- randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input
x. Then take the worst-case over all x with $|x|=n$.

$C(x)$	x

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)
- $o(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow slower than f)

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)
- $o(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow faster than f)

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

$$
g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty
$$

- Note that for the version of the Landau notation defined here, we as-! sume that f and g are positive func- 1 tions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

$$
\begin{aligned}
& \Rightarrow g \in \mathcal{O}(f): 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty \\
& \Rightarrow g \in \Omega(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty
\end{aligned}
$$

- Note that for the version of the Landau notation defined here, we as-! sume that f and g are positive func- 1 tions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

$$
\begin{aligned}
& \text { - } g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty \\
& -g \in \Omega(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty \\
& -g \in \Theta(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty
\end{aligned}
$$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

$$
\begin{aligned}
& \text { - } g \in \mathcal{O}(f): 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty \\
& -g \in \Omega(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty \\
& -g \in \Theta(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty \\
& -g \in o(f): \quad \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0
\end{aligned}
$$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

$$
\begin{aligned}
& \text { g} g \in \mathcal{O}(f): 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty \\
& -g \in \Omega(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty \\
& -g \in \Theta(f): 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty \\
& -g \in o(f): \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0 \\
& -g \in \omega(f): \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty
\end{aligned}
$$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. In this context $f(n)$ does not mean the function f evaluated at n, but instead it is ' a shorthand for the function itself (leaving ' out domain and codomain and only giving the rule of correspondence of the function). '
3. This is particularly useful if you do not want to ignore constant factors. For example the ' median of n elements can be determined using $\frac{3}{2} n+o(n)$ comparisons.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. In this context $f(n)$ does not mean the function f evaluated at n, but instead it is ' a shorthand for the function itself (leaving ' out domain and codomain and only giving । the rule of correspondence of the function). '
4. This is particularly useful if you do not want to ignore constant factors. For example the ' median of n elements can be determined using $\frac{3}{2} n+o(n)$ comparisons.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. People write e.g. $h(n)=f(n)+o(g(n))$ when they mean that there exists a function $z: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto z(n), z \in o(g)$ such that $h(n)=f(n)+z(n)$.
4. In this context $f(n)$ does not mean the function f evaluated at n, but instead it is ' a shorthand for the function itself (leaving ' out domain and codomain and only giving the rule of correspondence of the function). '
5. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2} n+o(n)$ comparisons.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. People write e.g. $h(n)=f(n)+o(g(n))$ when they mean that there exists a function $z: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto z(n), z \in o(g)$ such that $h(n)=f(n)+z(n)$.
4. People write $\mathcal{O}(f(n))=\mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.
5. In this context $f(n)$ does not mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).
6. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2} n+o(n)$ comparisons.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+3 n+1=2 n^{2}+\Theta(n)
$$

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+3 n+1=2 n^{2}+\Theta(n)
$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+3 n+1=2 n^{2}+\Theta(n)
$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+\mathcal{O}(n)=\Theta\left(n^{2}\right)
$$

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+\mathcal{O}(n)=\Theta\left(n^{2}\right)
$$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta\left(n^{2}\right)$ that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Careful!

Asymptotic Notation in Equations

How do we interpret an expression like:
I The $\Theta(i)$-symbol on the left represents one anonymous function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$, and then $\sum_{i} f(i)$ is I computed.

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Careful!

"It is understood" that every occurence of an \mathcal{O}-symbol (or $\Theta, \Omega, o, \omega)$ on the left represents one anonymous function.

Hence, the left side is not equal to

$$
\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n)
$$

$$
\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n) \text { does }
$$ ' not really have a reasonable interpretaItion.

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n)
$$

represents

$$
\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid f(n)=n^{2} \cdot g(n)+h(n)\right.
$$

$$
\text { with } g(n) \in \mathcal{O}(n) \text { and } h(n) \in \mathcal{O}(\log n)\}
$$

Recall that according to the previous
I slide e.g. the expressions $\sum_{i=1}^{n} \mathcal{O}(i)$ and
$\sum_{i=1}^{n / 2} \mathcal{O}(i)+\sum_{i=n / 2+1}^{n} \mathcal{O}(i)$ generate dif-
, ferent sets.

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n)=\Theta\left(n^{2}\right)
$$

represents

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n) \subseteq \Theta\left(n^{2}\right)
$$

Note that the equation does not hold.

Asymptotic Notation

Lemma 3

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c

Asymptotic Notation

Lemma 3

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$

Asymptotic Notation

Lemma 3

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$

Asymptotic Notation

Lemma 3

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(\max \{f(n), g(n)\})$

Asymptotic Notation

Lemma 3

Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(\max \{f(n), g(n)\})$

The expressions also hold for Ω. Note that this means that $f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})$.

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log _{a} n=\Theta\left(\log _{b} n\right)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log _{a} n=\Theta\left(\log _{b} n\right)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- In general $\log n=\log _{2} n$, i.e., we use 2 as the default base for the logarithm.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.
- Algorithm B. Running time $g(n)=\log ^{2} n$.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.
- Algorithm B. Running time $g(n)=\log ^{2} n$.

Clearly $f=o(g)$. However, as long as $\log n \leq 1000$ Algorithm B will be more efficient.

6 Recurrences

```
Algorithm 2 mergesort(list \(L\) )
    1: \(n \leftarrow \operatorname{size}(L)\)
    2: if \(n \leq 1\) return \(L\)
    3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{n}{2}\right\rfloor\right]\)
4: \(L_{2} \leftarrow L\left[\left\lfloor\frac{n}{2}\right\rfloor+1 \cdots n\right]\)
5: mergesort \(\left(L_{1}\right)\)
6: mergesort \(\left(L_{2}\right)\)
7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
8: return \(L\)
```


6 Recurrences

```
Algorithm 2 mergesort(list \(L\) )
1: \(n \leftarrow \operatorname{size}(L)\)
2: if \(n \leq 1\) return \(L\)
3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{n}{2}\right\rfloor\right]\)
4: \(L_{2} \leftarrow L\left[\left\lfloor\frac{n}{2}\right\rfloor+1 \cdots n\right]\)
5: mergesort \(\left(L_{1}\right)\)
6: mergesort \(\left(L_{2}\right)\)
7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
8: return \(L\)
```

This algorithm requires

$$
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\mathcal{O}(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+\mathcal{O}(n)
$$

comparisons when $n>1$ and 0 comparisons when $n \leq 1$.

Recurrences

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

Recurrences

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

For this we need to solve the recurrence.

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.
2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.
3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.
5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Informal way:

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Informal way:
Assume that instead we have

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Informal way:
Assume that instead we have

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
T(n) \leq 2 T\left(\frac{n}{2}\right)+c n
$$

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n
\end{aligned}
$$

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n
\end{aligned}
$$

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n
\end{aligned}
$$

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& \leq d n \log n
\end{aligned}
$$

if we choose $d \geq c$.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& \leq d n \log n
\end{aligned}
$$

if we choose $d \geq c$.

Formally, this is not correct if n is not a power of 2 . Also even in this case one would need to do an induction proof.

6.1 Guessing+Induction

How do we get a result for all values of n ?

6.1 Guessing+Induction

How do we get a result for all values of n ?
We consider the following recurrence instead of the original one:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

6.1 Guessing+Induction

How do we get a result for all values of n ?
We consider the following recurrence instead of the original one:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
T(n)
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
T(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n
\end{aligned}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 &
\end{aligned}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n
\end{aligned}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n &
\end{aligned}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

$$
\log n \leq \frac{n}{4}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

$$
\log n \leq \frac{n}{4} \leq d n \log n+(\log 9-3.5) d n+c n
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

$$
\begin{aligned}
\log n \leq \frac{n}{4} & \leq d n \log n+(\log 9-3.5) d n+c n \\
& \leq d n \log n-0.33 d n+c n
\end{aligned}
$$

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

$$
\begin{aligned}
\log n \leq \frac{n}{4} & \leq d n \log n+(\log 9-3.5) d n+c n \\
& \leq d n \log n-0.33 d n+c n \\
& \leq d n \log n
\end{aligned}
$$

for a suitable choice of d.

6.2 Master Theorem

Note that the cases do not cover all pos-
, sibilities.

Lemma 4

Let $a \geq 1, b \geq 1$ and $\epsilon>0$ denote constants. Consider the recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1.
If $f(n)=\mathcal{O}\left(n^{\log _{b}(a)-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2.
If $f(n)=\Theta\left(n^{\log _{b}(a)} \log ^{k} n\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$, $k \geq 0$.

Case 3.
If $f(n)=\Omega\left(n^{\log _{b}(a)+\epsilon}\right)$ and for sufficiently large n
af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ then $T(n)=\Theta(f(n))$.

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form b^{ℓ}, and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1 .

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

This gives

$$
T(n)=n^{\log _{b} a}+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) .
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
T(n)-n^{\log _{b} a}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon}
\end{aligned}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon}
\end{aligned}
$$

$$
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i} & =c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i}
\end{aligned}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
& T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
& \frac{b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i}}{\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1}}=c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
&
\end{aligned}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
& T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
& \frac{b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i}}{l}=c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
& \sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1}=c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right)
\end{aligned}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
\frac{b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i}}{l} & =c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1} & =c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right) \\
& =c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right)
\end{aligned}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i} & =c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1} & =c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right) \\
& =c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right) \\
& =\frac{c}{b^{\epsilon}-1} n^{\log _{b} a}\left(n^{\epsilon}-1\right) /\left(n^{\epsilon}\right)
\end{aligned}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i} & =c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1} & =c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right) \\
& =c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right) \\
& =\frac{c}{b^{\epsilon}-1} n^{\log _{b} a}\left(n^{\epsilon}-1\right) /\left(n^{\epsilon}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq\left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log _{b}(a)}
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\left.\log _{b} a\right)^{-i}=b^{\epsilon i} a^{-i}}\right. & =c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{a-1} & =c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right) \\
& =c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right) \\
& =\frac{c}{b^{\epsilon}-1} n^{\log _{b} a}\left(n^{\epsilon}-1\right) /\left(n^{\epsilon}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq\left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log _{b}(a)} \quad \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a}\right) .
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
T(n)-n^{\log _{b} a}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a \sum_{i=0}^{\log _{b} n-1}} 1
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\mathcal{O}\left(n^{\log _{b} a} \log _{b} n\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\mathcal{O}\left(n^{\log _{b} a} \log _{b} n\right) \quad \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log n\right)
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
T(n)-n^{\log _{b} a}
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a \sum_{i=0}^{\log _{b} n-1} 1}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\Omega\left(n^{\log _{b} a} \log _{b} n\right)
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\Omega\left(n^{\log _{b} a} \log _{b} n\right) \quad \Rightarrow T(n)=\Omega\left(n^{\log _{b} a} \log n\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
T(n)-n^{\log _{b} a}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n &
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k} \\
& =c n^{\log _{b} a} \sum_{i=1}^{\ell} i^{k}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k} \\
& =c n^{\log _{b}{ }_{i=1}^{\ell} i^{\ell} \approx \frac{1}{k} \ell^{k+1}}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k} \\
& =c n^{\log _{b} a} \sum_{i=1}^{\ell} i^{k} \\
& \approx \frac{c}{k} n^{\log _{b} a} \ell^{k+1}
\end{aligned}
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k} \\
& =c n^{\log _{b} a} \sum_{i=1}^{\ell} i^{k} \\
& \approx \frac{c}{k} n^{\log _{b} a} \ell^{k+1} \quad \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log ^{k+1} n\right) .
\end{aligned}
$$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

$q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q}$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
& T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right) \\
& q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \leq \frac{1}{1-c} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
& T(n)-n^{\log _{b} a}=\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right) \\
& q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} \leq \frac{1}{1-c} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq \mathcal{O}(f(n))
$$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right) \\
q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} & \leq \frac{1}{1-c} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq \mathcal{O}(f(n))
$$

$$
\Rightarrow T(n)=\Theta(f(n)) .
$$

'Where did we use $f(n) \geq \Omega\left(n^{\log _{b}}-\overline{a+\epsilon)}\right.$?
'

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

$$
\begin{array}{llllllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B
\end{array}
$$

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

$$
\begin{array}{|lllllllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 1_{0} & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & B \\
\hline 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 &
\end{array}
$$

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

$$
\begin{array}{rrrrrrrrrr}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
& 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

- This is also nown as the "school method" for multiplying integers. '
- Note that the intermediate numbers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

10001×1011

- This is also nown as the "school method" for multiplying integers. '
- Note that the intermediate numbers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

$$
10001 \times 1011
$$

- This is also nown as the "school method" for multiplying integers. '
- Note that the intermediate numbers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

| 1 | 0 | 0 | 0 | 1 | \times | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 1 | 0 | 0 | 0 | 1 | |

- This is also nown as the "school method" for multiplying integers. '
- Note that the intermediate num- ' bers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

| 10001×1001 | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 10001 |

- This is also nown as the "school method" for multiplying integers. '
- Note that the intermediate numbers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

| 10001×1001 | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 10001 |

- This is also nown as the "school method" for multiplying integers. '

0

- Note that the intermediate num- ' bers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

- Note that the intermediate numbers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

- Note that the intermediate numbers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.
 bers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

				0	0	0	
he "school g integers.		1			0		0
m-1	0	0					

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.
 bers that are generated can have at most $m+n \leq 2 n$ bits.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

					0	0	0	1
he "school g integers.				0	0	0	1	0
diate num- d can have	0	0	0	0	0	0	0	0
--- -							0	

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

			1	0			
he "-"school g integers.		1	0	0			
diate num-	0	0	0	0	0		0
its.---- 1	0	0	0	1	0		
	0						

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

Time requirement:

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

				0	0		
ischool:		1	0	0			
te numcan have	0	0	0	0	0		
---- 1	0	0	0	1	0		
	0	1		1			

Time requirement:

- Computing intermediate results: $\mathcal{O}(\mathrm{nm})$.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

| 1 | 0 | 0 | 0 | 1 | \times | 1 | 0 | 1 | 1 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | 0 | 0 | 0 | 1 | | |

Time requirement:

- Computing intermediate results: $\mathcal{O}(\mathrm{nm})$.
- Adding m numbers of length $\leq 2 n$:

$$
\mathcal{O}((m+n) m)=\mathcal{O}(n m)
$$

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length $n=2^{k}$, for some k.

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

| b_{n-1} | \cdots | $\mathrm{~b}_{\frac{n}{2}}$ | $\mathrm{~b}_{\frac{n}{2}-1}$ | \cdots | $\mathrm{~b}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |\times| a_{n-1} | \cdots | $\mathrm{a}_{\frac{n}{2}}$ | $\mathrm{a}_{\frac{n}{2}-1}$ | \cdots |
| :--- | :--- | :--- | :--- | :--- |

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

B_{1}	B_{0}

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

B_{1}	B_{0}

Then it holds that

$$
A=A_{1} \cdot 2^{\frac{n}{2}}+A_{0} \text { and } B=B_{1} \cdot 2^{\frac{n}{2}}+B_{0}
$$

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

| B_{1} | B_{0} |
| :---: | :---: | :---: |

Then it holds that

$$
A=A_{1} \cdot 2^{\frac{n}{2}}+A_{0} \text { and } B=B_{1} \cdot 2^{\frac{n}{2}}+B_{0}
$$

Hence,

$$
A \cdot B=A_{1} B_{1} \cdot 2^{n}+\left(A_{1} B_{0}+A_{0} B_{1}\right) \cdot 2^{\frac{n}{2}}+A_{0} B_{0}
$$

Example: Multiplying Two Integers

$$
\begin{aligned}
& \text { Algorithm } 3 \text { mult }(A, B) \\
& \hline \text { 1: if }|A|=|B|=1 \text { then } \\
& \text { 2: return } a_{0} \cdot b_{0} \\
& \text { 3: split } A \text { into } A_{0} \text { and } A_{1} \\
& \text { 4: split } B \text { into } B_{0} \text { and } B_{1} \\
& \text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) \\
& \text { 6: } Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right) \\
& \text { 7: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) \\
& \text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}
\end{aligned}
$$

Example: Multiplying Two Integers

$$
\begin{aligned}
& \text { Algorithm } 3 \text { mult }(A, B) \\
& \hline \text { 1: if }|A|=|B|=1 \text { then } \\
& \text { 2: return } a_{0} \cdot b_{0} \\
& \text { 3: split } A \text { into } A_{0} \text { and } A_{1} \\
& \text { 4: split } B \text { into } B_{0} \text { and } B_{1} \\
& \text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) \\
& \text { 6: } Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right) \\
& \text { 7: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) \\
& \text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}
\end{aligned}
$$

Example: Multiplying Two Integers

$$
\begin{aligned}
& \hline \text { Algorithm } 3 \text { mult }(A, B) \\
& \hline \text { 1: if }|A|=|B|=1 \text { then } \\
& \text { 2: return } a_{0} \cdot b_{0} \\
& \text { 3: split } A \text { into } A_{0} \text { and } A_{1} \\
& \text { 4: split } B \text { into } B_{0} \text { and } B_{1} \\
& \text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) \\
& \text { 6: } Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right) \\
& \text { 7: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) \\
& \text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}
\end{aligned}
$$

Example: Multiplying Two Integers

$$
\begin{aligned}
& \hline \text { Algorithm } 3 \text { mult }(A, B) \\
& \hline \text { 1: if }|A|=|B|=1 \text { then } \\
& \text { 2: return } a_{0} \cdot b_{0} \\
& \text { 3: split } A \text { into } A_{0} \text { and } A_{1} \\
& \text { 4: split } B \text { into } B_{0} \text { and } B_{1} \\
& \text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) \\
& \text { 6: } Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right) \\
& \text { 7: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) \\
& \text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}
\end{aligned}
$$

Example: Multiplying Two Integers

Algorithm 3 mult (A, B)	
1: if $\|A\|=\|B\|=1$ then	$\mathcal{O}(1)$
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(1)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$\mathcal{O}(n)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	
6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$	
7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	

Example: Multiplying Two Integers

Algorithm 3 mult (A, B)	
1: if $\|A\|=\|B\|=1$ then	$\mathcal{O}(1)$
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(1)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$\mathcal{O}(n)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	
6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$	
7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	

Example: Multiplying Two Integers

Algorithm 3 mult (A, B)	$\mathcal{O}(1)$
1: if $\|A\|=\|B\|=1$ then	
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(n)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$T\left(\frac{n}{2}\right)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	$2 T\left(\frac{n}{2}\right)+\mathcal{O}(n)$
6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$	
7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	

Example: Multiplying Two Integers

Algorithm 3 mult (A, B)	$\mathcal{O}(1)$
1: if $\|A\|=\|B\|=1$ then	
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(n)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$T\left(\frac{n}{2}\right)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	$2 T\left(\frac{n}{2}\right)+\mathcal{O}(n)$
6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$	$T\left(\frac{n}{2}\right)$
7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	

Example: Multiplying Two Integers

Algorithm 3 mult (A, B)	
1: if $\|A\|=\|B\|=1$ then	$\mathcal{O}(1)$
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(1)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$\mathcal{O}(n)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	$T\left(\frac{n}{2}\right)$
6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$	$2 T\left(\frac{n}{2}\right)+\mathcal{O}(n)$
7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	$T\left(\frac{n}{2}\right)$
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	$\mathcal{O}(n)$

Example: Multiplying Two Integers

```
Algorithm 3 mult \((A, B)\)
    1: if \(|A|=|B|=1\) then
    2: return \(a_{0} \cdot b_{0}\)
    3: split \(A\) into \(A_{0}\) and \(A_{1}\)
    4: split \(B\) into \(B_{0}\) and \(B_{1}\)
    5: \(Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)\)
    6: \(Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)\)
    7: \(Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)\)
8: return \(Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}\)
\(\mathcal{O}\) (1)
\(\mathcal{O}(1)\)
\(\mathcal{O}(n)\)
\(\mathcal{O}(n)\)
\(T\left(\frac{n}{2}\right)\)
\(2 T\left(\frac{n}{2}\right)+\mathcal{O}(n)\)
\(T\left(\frac{n}{2}\right)\)
\(\mathcal{O}(n)\)
```

We get the following recurrence:

$$
T(n)=4 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$
$T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

In our case $a=4, b=2$, and $f(n)=\Theta(n)$. Hence, we are in
Case 1 , since $n=\mathcal{O}\left(n^{2-\epsilon}\right)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$.

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

In our case $a=4, b=2$, and $f(n)=\Theta(n)$. Hence, we are in
Case 1 , since $n=\mathcal{O}\left(n^{2-\epsilon}\right)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$.
We get a running time of $\mathcal{O}\left(n^{2}\right)$ for our algorithm.

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

In our case $a=4, b=2$, and $f(n)=\Theta(n)$. Hence, we are in
Case 1 , since $n=\mathcal{O}\left(n^{2-\epsilon}\right)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$.
We get a running time of $\mathcal{O}\left(n^{2}\right)$ for our algorithm.
\Rightarrow Not better then the "school method".

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :
A more precise
(correct) analysis
would say that
computing Z_{1}
needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
Z_{1}=A_{1} B_{0}+A_{0} B_{1}
$$

A more precise
(correct) analysis
would say that
computing Z_{1}
needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-A_{1} B_{1}-A_{0} B_{0}
\end{aligned}
$$

A more precise
(correct) analysis
would say that
computing Z_{1}
needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Hence,
A more precise
(correct) analysis
would say that
computing Z_{1}
needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Hence,
Algorithm 4 mult (A, B)
1: if $|A|=|B|=1$ then
2: return $a_{0} \cdot b_{0}$
3: split A into A_{0} and A_{1}
4: split B into B_{0} and B_{1}
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$
6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$
7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{A_{1}}=\overbrace{A_{0} B_{0}} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1}}
\end{aligned}
$$

Hence,

> | Algorithm 4 mult (A, B) |
| :--- |
| 1: if $\|A\|=\|B\|=1$ then |
| 2: \quad return $a_{0} \cdot b_{0}$ |
| 3: split A into A_{0} and A_{1} |
| 4: split B into B_{0} and B_{1} |
| 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ |
| 6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ |
| 7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$ |
| 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$ |

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{0} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}-\overbrace{A_{0} B_{0}}
\end{aligned}
$$

Hence,

> | Algorithm 4 mult (A, B) |
| :--- |
| 1: if $\|A\|=\|B\|=1$ then |
| 2: \quad return $a_{0} \cdot b_{0}$ |
| 3: split A into A_{0} and A_{1} |
| 4: split B into B_{0} and B_{1} |
| 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ |
| 6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ |
| 7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$ |
| 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$ |

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{0} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}-\overbrace{A_{0} B_{0}}
\end{aligned}
$$

Hence,

> | Algorithm 4 mult (A, B) |
| :--- |
| 1: if $\|A\|=\|B\|=1$ then |
| 2: \quad return $a_{0} \cdot b_{0}$ |
| 3: split A into A_{0} and A_{1} |
| 4: split B into B_{0} and B_{1} |
| 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ |
| 6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ |
| 7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$ |
| 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$ |

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{0} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}-\overbrace{A_{0} B_{0}}
\end{aligned}
$$

Hence,

> | Algorithm 4 mult (A, B) |
| :--- |
| 1: if $\|A\|=\|B\|=1$ then |
| 2: \quad return $a_{0} \cdot b_{0}$ |
| 3: split A into A_{0} and A_{1} |
| 4: split B into B_{0} and B_{1} |
| 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ |
| 6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ |
| 7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$ |
| 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$ |

$\mathcal{O}(n)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{0} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}-\overbrace{A_{0} B_{0}}
\end{aligned}
$$

Hence,
A more precise
(correct) analysis
would say that
computing Z_{1}
needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$.

> | Algorithm 4 mult (A, B) |
| :--- |
| 1: if $\|A\|=\|B\|=1$ then |
| 2: \quad return $a_{0} \cdot b_{0}$ |
| 3: split A into A_{0} and A_{1} |
| 4: split B into B_{0} and B_{1} |
| 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ |
| 6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ |
| 7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$ |
| 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$ |

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{0} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}-\overbrace{A_{0} B_{0}}
\end{aligned}
$$

Hence,

```
Algorithm 4 mult \((A, B)\)
    1: if \(|A|=|B|=1\) then
    2: return \(a_{0} \cdot b_{0}\)
    3: split \(A\) into \(A_{0}\) and \(A_{1}\)
    4: split \(B\) into \(B_{0}\) and \(B_{1}\)
    5: \(Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)\)
    6: \(Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)\)
7: \(Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}\)
8: return \(Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}\)
```

 \(\mathcal{O}(1)\)
 \(\mathcal{O}(1)\)
 \(\mathcal{O}(n)\)
 \(\mathcal{O}(n)\)
 $T\left(\frac{n}{2}\right)$
$T\left(\frac{n}{2}\right)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \quad=Z_{2}=Z_{0} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}-\overbrace{A_{0} B_{0}}
\end{aligned}
$$

Hence,

Algorithm 4 mult (A, B) 1: if $\|A\|=\|B\|=1$ then 2: \quad return $a_{0} \cdot b_{0}$ 3: split A into A_{0} and A_{1} 4: split B into B_{0} and B_{1} 5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$ 6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$ 7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$ 8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	$\mathcal{O}(1)$
	$\mathcal{O}(n)$
	$\mathcal{O}(n)$
	$T\left(\frac{n}{2}\right)$

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Hence,
A more precise
(correct) analysis
would say that
computing Z_{1}
needs time
$T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)$.

$$
\begin{array}{l|l}
\text { Algorithm } 4 \text { mult }(A, B) & \\
\hline \text { 1: if }|A|=|B|=1 \text { then } & \mathcal{O}(1) \\
\text { 2: } \quad \text { return } a_{0} \cdot b_{0} & \mathcal{O}(1) \\
\text { 3: split } A \text { into } A_{0} \text { and } A_{1} & \mathcal{O}(n) \\
\text { 4: split } B \text { into } B_{0} \text { and } B_{1} & \mathcal{O}(n) \\
\text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) & T\left(\frac{n}{2}\right) \\
\text { 6: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) & T\left(\frac{n}{2}\right) \\
\text { 7: } Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0} & T\left(\frac{n}{2}\right) \\
\text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0} & \mathcal{O}(n)
\end{array}
$$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Again we are in Case 1. We get a running time of
$\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.59}\right)$.

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Again we are in Case 1. We get a running time of
$\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.59}\right)$.
A huge improvement over the "school method".

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial

Observations:

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

The Homogenous Case

The solution space
$S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T}$ fulfills recurrence relation $\}$
is a vector space.

The Homogenous Case

The solution space
$S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T}$ fulfills recurrence relation $\}$
is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{T}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

The Homogenous Case

The solution space
$S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T}$ fulfills recurrence relation $\}$
is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{T}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?

The Homogenous Case

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{T}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?
We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens.

The Homogenous Case

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $\mathcal{I}_{1}, \mathcal{I}_{2} \in S$, then also $\alpha \mathcal{T}_{1}+\beta \mathcal{T}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?
We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$
c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \cdot \lambda^{n-2}+\cdots+c_{k} \cdot \lambda^{n-k}=0
$$

for all $n \geq k$.

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}=0
$$

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

This means that if λ_{i} is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

This means that if λ_{i} is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

is a solution for arbitrary values α_{i}.

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1]
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{aligned}
& \alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
& \alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2]
\end{aligned}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{aligned}
& \alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
& \alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2]
\end{aligned}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{gathered}
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
\alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2] \\
\vdots \\
\alpha_{1} \cdot \lambda_{1}^{k}+\alpha_{2} \cdot \lambda_{2}^{k}+\cdots+\alpha_{k} \cdot \lambda_{k}^{k}=T[k]
\end{gathered}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

Computing the Determinant

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1}
\end{array}\right|
$$

Computing the Determinant

$$
\begin{aligned}
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right| & =\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1}
\end{array}\right| \\
& =\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|
\end{aligned}
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|=
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|=
$$

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|=
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|=
$$

$$
\left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|
$$

Computing the Determinant

$$
\left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|=
$$

Computing the Determinant

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|= \\
& \\
& \prod_{i=2}^{k}\left(\lambda_{i}-\lambda_{1}\right) \cdot\left|\begin{array}{ccccc}
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-3} & \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2}
\end{array}\right|
\end{aligned}
$$

Computing the Determinant

Repeating the above steps gives:

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot \prod_{i>\ell}\left(\lambda_{i}-\lambda_{\ell}\right)
$$

Hence, if all λ_{i} 's are different, then the determinant is non-zero.

The Homogeneous Case

What happens if the roots are not all distinct?

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

The Homogeneous Case

What happens if the roots are not all distinct?
Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
P[\lambda] \cdot \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k}
$$

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
P[\lambda] \cdot \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k}
$$

Since λ_{i} is a root we can write this as $Q[\lambda] \cdot\left(\lambda-\lambda_{i}\right)^{2}$.
Calculating the derivative gives a polynomial that still has root λ_{i}.

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} \underbrace{n \lambda_{i}^{n}}_{T[n]}+c_{1} \underbrace{(n-1) \lambda_{i}^{n-1}}_{T[n-1]}+\cdots+c_{k} \underbrace{(n-k) \lambda_{i}^{n-k}}_{T[n-k]}=0
$$

The Homogeneous Case

Suppose λ_{i} has multiplicity j.

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.
Hence, $n^{\ell} \lambda_{i}^{n}$ is a solution for $\ell \in 0, \ldots, j-1$.

The Homogeneous Case

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$
c_{0} T[n]+c_{1} T[n-1]+\cdots+c_{k} T[n-k]=0
$$

Let $\lambda_{i}, i=1, \ldots, m$ be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_{i}. Then the general solution to the recurrence is given by

$$
T[n]=\sum_{i=1}^{m} \sum_{j=0}^{\ell_{i}-1} \alpha_{i j} \cdot\left(n^{j} \lambda_{i}^{n}\right) .
$$

The full proof is omitted. We have only shown that any choice of $\alpha_{i j}$'s is a solution to the recurrence.

Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

The characteristic polynomial is

$$
\lambda^{2}-\lambda-1
$$

Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

The characteristic polynomial is

$$
\lambda^{2}-\lambda-1
$$

Finding the roots, gives

$$
\lambda_{1 / 2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+1}=\frac{1}{2}(1 \pm \sqrt{5})
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Rightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

Example: Fibonacci Sequence

Hence, the solution is

$$
\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

The Inhomogeneous Case

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

with $f(n) \neq 0$.
While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n),
$$

where T_{h} is any solution to the homogeneous equation, and T_{p} is one particular solution to the inhomogeneous equation.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n),
$$

where T_{h} is any solution to the homogeneous equation, and T_{p} is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

I get a completely determined recurrence if I add $T[0]=1$ and $T[1]=2$.

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\lambda^{2}-2 \lambda+1=0
$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$T[0]=1$ gives $\alpha=1$.

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$T[0]=1$ gives $\alpha=1$.
$T[1]=2$ gives $1+\beta=2 \Rightarrow \beta=1$.

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied
$r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied $r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
T[n-1]=2 T[n-2]-T[n-3]+2(n-1)-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=3 T[n-1]-3 T[n-2]+T[n-3]+2
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=3 T[n-1]-3 T[n-2]+T[n-3]+2
$$

and so on...

6.4 Generating Functions

Definition 7 (Generating Function)

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence. The corresponding

- generating function (Erzeugendenfunktion) is

$$
F(z):=\sum_{n \geq 0} a_{n} z^{n}
$$

6.4 Generating Functions

Definition 7 (Generating Function)

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence. The corresponding

- generating function (Erzeugendenfunktion) is

$$
F(z):=\sum_{n \geq 0} a_{n} z^{n}
$$

- exponential generating function (exponentielle Erzeugendenfunktion) is

$$
F(z):=\sum_{n \geq 0} \frac{a_{n}}{n!} z^{n} .
$$

6.4 Generating Functions

Example 8

1. The generating function of the sequence $(1,0,0, \ldots)$ is

$$
F(z)=1 .
$$

6.4 Generating Functions

Example 8

1. The generating function of the sequence $(1,0,0, \ldots)$ is

$$
F(z)=1 .
$$

2. The generating function of the sequence $(1,1,1, \ldots)$ is

$$
F(z)=\frac{1}{1-z} .
$$

6.4 Generating Functions

There are two different views:

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

6.4 Generating Functions

There are two different views:
A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

- Equality: f and g are equal if $a_{n}=b_{n}$ for all n.

6.4 Generating Functions

There are two different views:
A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

- Equality: f and g are equal if $a_{n}=b_{n}$ for all n.
- Addition: $f+g:=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) z^{n}$.

6.4 Generating Functions

There are two different views:
A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

- Equality: f and g are equal if $a_{n}=b_{n}$ for all n.
- Addition: $f+g:=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) z^{n}$.
- Multiplication: $f \cdot g:=\sum_{n \geq 0} c_{n} z^{n}$ with $c_{n}=\sum_{p=0}^{n} a_{p} b_{n-p}$.

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

- Equality: f and g are equal if $a_{n}=b_{n}$ for all n.
- Addition: $f+g:=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) z^{n}$.
- Multiplication: $f \cdot g:=\sum_{n \geq 0} c_{n} z^{n}$ with $c_{n}=\sum_{p=0}^{n} a_{p} b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

The arithmetic view:

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \rightarrow \mathbb{C}$.

6.4 Generating Functions

The arithmetic view:
We view a power series as a function $f: \mathbb{C} \rightarrow \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

What does $\sum_{n \geq 0} z^{n}=\frac{1}{1-z}$ mean in the algebraic view?

6.4 Generating Functions

What does $\sum_{n \geq 0} z^{n}=\frac{1}{1-z}$ mean in the algebraic view?
It means that the power series $1-z$ and the power series $\sum_{n \geq 0} z^{n}$ are invers, i.e.,

$$
(1-z) \cdot\left(\sum_{n \geq 0}^{\infty} z^{n}\right)=1
$$

6.4 Generating Functions

What does $\sum_{n \geq 0} z^{n}=\frac{1}{1-z}$ mean in the algebraic view?
It means that the power series $1-z$ and the power series $\sum_{n \geq 0} z^{n}$ are invers, i.e.,

$$
(1-z) \cdot\left(\sum_{n \geq 0}^{\infty} z^{n}\right)=1
$$

This is well-defined.

6.4 Generating Functions

Suppose we are given the generating function

$$
\sum_{n \geq 0} z^{n}=\frac{1}{1-z}
$$

6.4 Generating Functions

Suppose we are given the generating function

$$
\sum_{n \geq 0} z^{n}=\frac{1}{1-z}
$$

We can compute the derivative:

$$
\sum_{n \geq 1} n z^{n-1}=\frac{1}{(1-z)^{2}}
$$

6.4 Generating Functions

Suppose we are given the generating function

$$
\sum_{n \geq 0} z^{n}=\frac{1}{1-z}
$$

We can compute the derivative:

$$
\underbrace{\sum_{n \geq 1} n z^{n-1}}_{\sum_{n \geq 0}(n+1) z^{n}}=\frac{1}{(1-z)^{2}}
$$

6.4 Generating Functions

formally the derivative of a formal power series $\sum_{n \geq 0} a_{n} z^{n}$ is defined as $\sum_{n \geq 0} n a_{n} z^{n-1}$.

Suppose we are given the generating funci' The known rules for differentiation work for this definition. In partic-

$$
\sum_{n \geq 0} z^{n}=\frac{1}{1-z}
$$ ular, e.g. the derivative of $\frac{1}{1-2}$ is $\frac{1}{(1-z)^{2}}$.

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove
We can compute the derivative:

$$
\underbrace{\sum_{n \geq 1} n z^{n-1}}_{\sum_{n \geq 0}(n+1) z^{n}}=\frac{1}{(1-z)^{2}}
$$

Hence, the generating function of the sequence $a_{n}=n+1$
is $1 /(1-z)^{2}$.

6.4 Generating Functions

We can repeat this

6.4 Generating Functions

We can repeat this

$$
\sum_{n \geq 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

6.4 Generating Functions

We can repeat this

$$
\sum_{n \geq 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

Derivative:

$$
\sum_{n \geq 1} n(n+1) z^{n-1}=\frac{2}{(1-z)^{3}}
$$

6.4 Generating Functions

We can repeat this

$$
\sum_{n \geq 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

Derivative:

$$
\underbrace{\sum_{n \geq 1} n(n+1) z^{n-1}}_{\sum_{n \geq 0}(n+1)(n+2) z^{n}}=\frac{2}{(1-z)^{3}}
$$

6.4 Generating Functions

We can repeat this

$$
\sum_{n \geq 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

Derivative:

$$
\underbrace{\sum_{n \geq 1} n(n+1) z^{n-1}}_{\sum_{n \geq 0}(n+1)(n+2) z^{n}}=\frac{2}{(1-z)^{3}}
$$

Hence, the generating function of the sequence
$a_{n}=(n+1)(n+2)$ is $\frac{2}{(1-z)^{3}}$.

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k}
$$

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k}=\sum_{n \geq 0}(n+k) \cdot \ldots \cdot(n+1) z^{n}
$$

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\begin{aligned}
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k} & =\sum_{n \geq 0}(n+k) \cdot \ldots \cdot(n+1) z^{n} \\
& =\frac{k!}{(1-z)^{k+1}}
\end{aligned}
$$

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\begin{aligned}
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k} & =\sum_{n \geq 0}(n+k) \cdot \ldots \cdot(n+1) z^{n} \\
& =\frac{k!}{(1-z)^{k+1}}
\end{aligned}
$$

Hence:

$$
\sum_{n \geq 0}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}
$$

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\begin{aligned}
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k} & =\sum_{n \geq 0}(n+k) \cdot \ldots \cdot(n+1) z^{n} \\
& =\frac{k!}{(1-z)^{k+1}}
\end{aligned}
$$

Hence:

$$
\sum_{n \geq 0}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}
$$

The generating function of the sequence $a_{n}=\binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

$$
\sum_{n \geq 0} n z^{n}=\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n}
$$

6.4 Generating Functions

$$
\begin{aligned}
\sum_{n \geq 0} n z^{n} & =\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{1-z}
\end{aligned}
$$

6.4 Generating Functions

$$
\begin{aligned}
\sum_{n \geq 0} n z^{n} & =\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{1-z} \\
& =\frac{z}{(1-z)^{2}}
\end{aligned}
$$

6.4 Generating Functions

$$
\begin{aligned}
\sum_{n \geq 0} n z^{n} & =\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{1-z} \\
& =\frac{z}{(1-z)^{2}}
\end{aligned}
$$

The generating function of the sequence $a_{n}=n$ is $\frac{z}{(1-z)^{2}}$.

6.4 Generating Functions

We know

$$
\sum_{n \geq 0} y^{n}=\frac{1}{1-y}
$$

6.4 Generating Functions

We know

$$
\sum_{n \geq 0} y^{n}=\frac{1}{1-y}
$$

Hence,

$$
\sum_{n \geq 0} a^{n} z^{n}=\frac{1}{1-a z}
$$

6.4 Generating Functions

We know

$$
\sum_{n \geq 0} y^{n}=\frac{1}{1-y}
$$

Hence,

$$
\sum_{n \geq 0} a^{n} z^{n}=\frac{1}{1-a z}
$$

The generating function of the sequence $f_{n}=a^{n}$ is $\frac{1}{1-a z}$.

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
A(z)
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n}
\end{aligned}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n}
\end{aligned}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n} \\
& =z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} z^{n}
\end{aligned}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n} \\
& =z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\sum_{n \geq 0} z^{n}
\end{aligned}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n} \\
& =z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\frac{1}{1-z}
\end{aligned}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

$$
A(z)=\frac{1}{(1-z)^{2}}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{(1-z)^{2}}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n}
$$

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n}
$$

Hence, $a_{n}=n+1$.

Some Generating Functions

n-th sequence element	generating function

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{2}}$

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{2}}$
n	$\frac{1}{(1-z)^{k+1}}$
	$\frac{z}{(1-z)^{2}}$

Some Generating Functions

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
$n+1$	$\frac{1}{(1-z)^{2}}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^{2}}$
n^{2}	$\frac{1}{1-a z}$
	$\frac{z(1+z)}{(1-z)^{3}}$

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
$n+1$	$\frac{1}{(1-z)^{2}}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^{2}}$
a^{n}	$\frac{1}{1-a z}$
n^{2}	$\frac{z(1+z)}{(1-z)^{3}}$
$\frac{1}{n!}$	e^{z}

Some Generating Functions

n-th sequence element	generating function

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
$f_{n-k}(n \geq k) ; 0$ otw.	$z^{k} F$

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
$f_{n-k}(n \geq k) ; 0$ otw.	$z^{k} F$
$\sum_{i=0}^{n} f_{i}$	$\frac{F(z)}{1-z}$

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
$f_{n-k}(n \geq k) ; 0$ otw.	$z^{k} F$
$\sum_{i=0}^{n} f_{i}$	$\frac{F(z)}{1-z}$
$n f_{n}$	$z \frac{\mathrm{~d} F(z)}{\mathrm{d} z}$

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
$f_{n-k}(n \geq k) ; 0$ otw.	$z^{k} F$
$\sum_{i=0}^{n} f_{i}$	$\frac{F(z)}{1-z}$
$n f_{n}$	$z \frac{\mathrm{~d} F(z)}{\mathrm{d} z}$
$c^{n} f_{n}$	$F(c z)$

Solving Recursions with Generating Functions

$$
\text { 1. Set } A(z)=\sum_{n \geq 0} a_{n} z^{n} \text {. }
$$

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

- partial fraction decomposition (Partialbruchzerlegung)

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

- partial fraction decomposition (Partialbruchzerlegung)
- lookup in tables

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

- partial fraction decomposition (Partialbruchzerlegung)
- lookup in tables

6. The coefficients of the resulting power series are the a_{n}.

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z)=a_{0}+\sum_{n \geq 1} a_{n} z^{n}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z)=a_{0}+\sum_{n \geq 1} a_{n} z^{n}
$$

2. Plug in:

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z)=a_{0}+\sum_{n \geq 1} a_{n} z^{n}
$$

2. Plug in:

$$
A(z)=1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
A(z)=1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1}
\end{aligned}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n}
\end{aligned}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n} \\
& =1+2 z \cdot A(z)
\end{aligned}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n} \\
& =1+2 z \cdot A(z)
\end{aligned}
$$

4. Solve for $A(z)$.

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n} \\
& =1+2 z \cdot A(z)
\end{aligned}
$$

4. Solve for $A(z)$.

$$
A(z)=\frac{1}{1-2 z}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

5. Rewrite $f(z)$ as a power series:

$$
A(z)=\frac{1}{1-2 z}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

5. Rewrite $f(z)$ as a power series:

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{1-2 z}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

5. Rewrite $f(z)$ as a power series:

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{1-2 z}=\sum_{n \geq 0} 2^{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

1. Set up generating function:

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n} \\
& =1+3 z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} n z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n} \\
& =1+3 z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} n z^{n} \\
& =1+3 z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} n z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n} \\
& =1+3 z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} n z^{n} \\
& =1+3 z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} n z^{n} \\
& =1+3 z A(z)+\frac{z}{(1-z)^{2}}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

4. Solve for $A(z)$:

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

4. Solve for $A(z)$:

$$
A(z)=1+3 z A(z)+\frac{z}{(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

4. Solve for $A(z)$:

$$
A(z)=1+3 z A(z)+\frac{z}{(1-z)^{2}}
$$

gives

$$
A(z)=\frac{(1-z)^{2}+z}{(1-3 z)(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

4. Solve for $A(z)$:

$$
A(z)=1+3 z A(z)+\frac{z}{(1-z)^{2}}
$$

gives

$$
A(z)=\frac{(1-z)^{2}+z}{(1-3 z)(1-z)^{2}}=\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

This gives

$$
z^{2}-z+1=A(1-z)^{2}+B(1-3 z)(1-z)+C(1-3 z)
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

This gives

$$
\begin{aligned}
z^{2}-z+1 & =A(1-z)^{2}+B(1-3 z)(1-z)+C(1-3 z) \\
& =A\left(1-2 z+z^{2}\right)+B\left(1-4 z+3 z^{2}\right)+C(1-3 z)
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

This gives

$$
\begin{aligned}
z^{2}-z+1 & =A(1-z)^{2}+B(1-3 z)(1-z)+C(1-3 z) \\
& =A\left(1-2 z+z^{2}\right)+B\left(1-4 z+3 z^{2}\right)+C(1-3 z) \\
& =(A+3 B) z^{2}+(-2 A-4 B-3 C) z+(A+B+C)
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

This leads to the following conditions:

$$
\begin{aligned}
A+B+C & =1 \\
2 A+4 B+3 C & =1 \\
A+3 B & =1
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

This leads to the following conditions:

$$
\begin{aligned}
A+B+C & =1 \\
2 A+4 B+3 C & =1 \\
A+3 B & =1
\end{aligned}
$$

which gives

$$
A=\frac{7}{4} \quad B=-\frac{1}{4} \quad C=-\frac{1}{2}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

$$
A(z)=\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

$$
\begin{aligned}
A(z) & =\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}} \\
& =\frac{7}{4} \cdot \sum_{n \geq 0} 3^{n} z^{n}-\frac{1}{4} \cdot \sum_{n \geq 0} z^{n}-\frac{1}{2} \cdot \sum_{n \geq 0}(n+1) z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

$$
\begin{aligned}
A(z) & =\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}} \\
& =\frac{7}{4} \cdot \sum_{n \geq 0} 3^{n} z^{n}-\frac{1}{4} \cdot \sum_{n \geq 0} z^{n}-\frac{1}{2} \cdot \sum_{n \geq 0}(n+1) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{4}-\frac{1}{2}(n+1)\right) z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

$$
\begin{aligned}
A(z) & =\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}} \\
& =\frac{7}{4} \cdot \sum_{n \geq 0} 3^{n} z^{n}-\frac{1}{4} \cdot \sum_{n \geq 0} z^{n}-\frac{1}{2} \cdot \sum_{n \geq 0}(n+1) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{4}-\frac{1}{2}(n+1)\right) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{2} n-\frac{3}{4}\right) z^{n}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

$$
\begin{aligned}
A(z) & =\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}} \\
& =\frac{7}{4} \cdot \sum_{n \geq 0} 3^{n} z^{n}-\frac{1}{4} \cdot \sum_{n \geq 0} z^{n}-\frac{1}{2} \cdot \sum_{n \geq 0}(n+1) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{4}-\frac{1}{2}(n+1)\right) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{2} n-\frac{3}{4}\right) z^{n}
\end{aligned}
$$

6. This means $a_{n}=\frac{7}{4} 3^{n}-\frac{1}{2} n-\frac{3}{4}$.

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
g_{n}=g_{n-1}+g_{n-2} \text { for } n \geq 2
$$

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1\left(\text { for } \log =\log _{2}\right), g_{0}=0
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1\left(\text { for } \log =\log _{2}\right), g_{0}=0 \\
g_{n} & =F_{n}(n \text {-th Fibonacci number })
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1\left(\text { for } \log =\log _{2}\right), g_{0}=0 \\
g_{n} & =F_{n}(n \text {-th Fibonacci number }) \\
f_{n} & =2^{F_{n}}
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 10

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 10

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1 ;
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}} .
$$

6.5 Transformation of the Recurrence

Example 10

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}} .
$$

Then:

$$
g_{0}=1
$$

6.5 Transformation of the Recurrence

Example 10

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1 ;
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}} .
$$

Then:

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=3 g_{k-1}+2^{k}, k \geq 1
\end{aligned}
$$

6 Recurrences

We get

$$
g_{k}=3\left[g_{k-1}\right]+2^{k}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k}
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k}
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k}
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k}
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k} \\
& =2^{k} \cdot \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i}
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k} \\
& =2^{k} \cdot \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1}-1}{1 / 2}
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k} \\
& =2^{k} \cdot \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1}-1}{1 / 2}=3^{k+1}-2^{k+1}
\end{aligned}
$$

6 Recurrences

Let $n=2^{k}$:

$$
\begin{aligned}
& g_{k}=3^{k+1}-2^{k+1}, \text { hence } \\
& f_{n}=3 \cdot 3^{k}-2 \cdot 2^{k}
\end{aligned}
$$

6 Recurrences

Let $n=2^{k}$:

$$
\begin{aligned}
g_{k} & =3^{k+1}-2^{k+1}, \text { hence } \\
f_{n} & =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3\left(2^{\log 3}\right)^{k}-2 \cdot 2^{k}
\end{aligned}
$$

6 Recurrences

Let $n=2^{k}$:

$$
\begin{aligned}
g_{k} & =3^{k+1}-2^{k+1}, \text { hence } \\
f_{n} & =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3\left(2^{\log 3}\right)^{k}-2 \cdot 2^{k} \\
& =3\left(2^{k}\right)^{\log 3}-2 \cdot 2^{k}
\end{aligned}
$$

6 Recurrences

Let $n=2^{k}$:

$$
\begin{aligned}
g_{k} & =3^{k+1}-2^{k+1}, \text { hence } \\
f_{n} & =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3\left(2^{\log 3}\right)^{k}-2 \cdot 2^{k} \\
& =3\left(2^{k}\right)^{\log 3}-2 \cdot 2^{k} \\
& =3 n^{\log 3}-2 n
\end{aligned}
$$

Part III

Data Structures

Abstract Data Type

An abstract data type (ADT) is defined by an interface of operations or methods that can be performed and that have a defined behavior.

The data types in this lecture all operate on objects that are represented by a [key, value] pair.

- The key comes from a totally ordered set, and we assume that there is an efficient comparison function.
- The value can be anything; it usually carries satellite information important for the application that uses the ADT.

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert (x) : Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert (\boldsymbol{x}) : Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.
- S. delete (x) : Given pointer to object x from S, delete x from the set.

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert (x) : Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.
- S. delete (x) : Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.

Dynamic Set Operations

- S. search(k): Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert (\boldsymbol{x}) : Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.
-S. delete (x) : Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.

Dynamic Set Operations

- S. search (\boldsymbol{k}) : Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert (\boldsymbol{x}) : Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.
-S. delete (x) : Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- S. successor (x) : Return pointer to the next larger element in S or null if x is maximum.

Dynamic Set Operations

- S. search (k) : Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert (x) : Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.
-S. delete (\boldsymbol{x}) : Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- S. successor (x) : Return pointer to the next larger element in S or null if x is maximum.
- S. predecessor (\boldsymbol{x}) : Return pointer to the next smaller element in S or null if x is minimum.

Dynamic Set Operations

- S. union $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. The set S^{\prime} is destroyed.

Dynamic Set Operations

- S. union $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. The set S^{\prime} is destroyed.
- S. merge $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. Requires $S \cap S^{\prime}=\emptyset$.

Dynamic Set Operations

- S. union $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. The set S^{\prime} is destroyed.
- S. merge $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. Requires $S \cap S^{\prime}=\emptyset$.
- S. split $\left(k, S^{\prime}\right)$:
$S:=\{x \in S \mid \operatorname{key}[x] \leq k\}, S^{\prime}:=\{x \in S \mid \operatorname{key}[x]>k\}$.

Dynamic Set Operations

- S. union $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. The set S^{\prime} is destroyed.
- S. merge $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. Requires $S \cap S^{\prime}=\emptyset$.
- $S . \operatorname{split}\left(k, S^{\prime}\right)$:
$S:=\{x \in S \mid \operatorname{key}[x] \leq k\}, S^{\prime}:=\{x \in S \mid \operatorname{key}[x]>k\}$.
- S. concatenate $\left(S^{\prime}\right): S:=S \cup S^{\prime}$.

Requires key[S.maximum()] $\leq \operatorname{key}\left[S^{\prime}\right.$. minimum()].

Dynamic Set Operations

- S. union $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. The set S^{\prime} is destroyed.
- S. merge $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. Requires $S \cap S^{\prime}=\emptyset$.
- $S . \operatorname{split}\left(k, S^{\prime}\right)$:
$S:=\{x \in S \mid \operatorname{key}[x] \leq k\}, S^{\prime}:=\{x \in S \mid \operatorname{key}[x]>k\}$.
- S. concatenate $\left(S^{\prime}\right): S:=S \cup S^{\prime}$.

Requires key[S.maximum()] $\leq \operatorname{key}\left[S^{\prime}\right.$. minimum()].

- S. decrease-key $(\boldsymbol{x}, \boldsymbol{k})$: Replace $\operatorname{key}[x]$ by $k \leq \operatorname{key}[x]$.

Examples of ADTs

Stack:

- S. push (x) : Insert an element.
- S. pop(): Return the element from S that was inserted most recently; delete it from S.
- S. empty(): Tell if S contains any object.

Examples of ADTs

Stack:

- S. push (x) : Insert an element.
- S. pop(): Return the element from S that was inserted most recently; delete it from S.
- S. empty(): Tell if S contains any object.

Queue:

- S. enqueue (x) : Insert an element.
- S. dequeue(): Return the element that is longest in the structure; delete it from S.
- S. empty(): Tell if S contains any object.

Examples of ADTs

Stack:

- S. push (x) : Insert an element.
- S. pop(): Return the element from S that was inserted most recently; delete it from S.
- S. empty(): Tell if S contains any object.

Queue:

- S. enqueue (\boldsymbol{x}) : Insert an element.
- S. dequeue(): Return the element that is longest in the structure; delete it from S.
- S. empty(): Tell if S contains any object.

Priority-Queue:

- S. insert (x) : Insert an element.
- S. delete-min(): Return the element with lowest key-value; delete it from S.

7 Dictionary

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- S. $\operatorname{search}(k)$: Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\operatorname{key}[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.
(External Search Trees store objects only at leaf-vertices)
Examples:

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- T.insert(x)
- T. delete (x)
- T. search(k)
- T. successor (x)
- T. predecessor (x)
- T. minimum()
- T.maximum()

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x] \operatorname{return} x$
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch (right $[x], k$)

Binary Search Trees: Minimum

Algorithm 2 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left $[x])$
7.1 Binary Search Trees

Binary Search Trees: Minimum

Algorithm 2 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left $[x])$
7.1 Binary Search Trees

Binary Search Trees: Minimum

Algorithm 2 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left $[x])$
7.1 Binary Search Trees

Binary Search Trees: Minimum

Algorithm 2 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left $[x])$
7.1 Binary Search Trees

Binary Search Trees: Minimum

Algorithm 2 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left $[x])$
7.1 Binary Search Trees

Binary Search Trees: Minimum

Algorithm 2 TreeMin (x)
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left $[x])$
7.1 Binary Search Trees

Binary Search Trees: Successor

Binary Search Trees: Insert

Binary Search Trees: Insert

Insert element not in the tree.

Algorithm 4 Treelnsert (x, z)

1: if $x=$ null then
2: $\quad \operatorname{root}[T] \leftarrow z$; parent $[z] \leftarrow$ null;
3: return;
4: if $\operatorname{key}[x]>\operatorname{key}[z]$ then
5: \quad if $\operatorname{left}[x]=$ null then
6: $\quad \operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;
7: \quad else TreeInsert(left $[x], z)$;
8: else
9: \quad if $\operatorname{right}[x]=$ null then
10: $\quad \operatorname{right}[x] \leftarrow z$; parent $[z] \leftarrow x$;
11: else TreeInsert $(\operatorname{right}[x], z)$;

Binary Search Trees: Insert

Insert element not in the tree.

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 Treelnsert (x, z)
1: if $x=$ null then
2: $\quad \operatorname{root}[T] \leftarrow z$; parent $[z] \leftarrow \operatorname{null}$;
3: return;
4: if $\operatorname{key}[x]>\operatorname{key}[z]$ then
5: if left $[x]=$ null then $\operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;
else TreeInsert(left $[x], z)$;
8: else
9: \quad if $\operatorname{right}[x]=$ null then
10: $\quad \operatorname{right}[x] \leftarrow z$; parent $[z] \leftarrow x$;
11: else TreeInsert(right $[x], z)$;

Binary Search Trees: Insert

Insert element not in the tree.

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Insert

Insert element not in the tree.
TreeInsert(root, 20)

Binary Search Trees: Delete

Binary Search Trees: Delete

Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete

```
Algorithm 9 TreeDelete \((z)\)
    1: if left \([z]=\) null or right \([z]=\) null
    2: \(\quad\) then \(y \leftarrow z\) else \(y \leftarrow \operatorname{TreeSucc}(z) ; \quad\) select \(y\) to splice out
    if left \([y] \neq\) null
    then \(x \leftarrow \operatorname{left}[y]\) else \(x \leftarrow \operatorname{right}[y] ; x\) is child of \(y\) (or null)
    5: if \(x \neq \operatorname{null}\) then parent \([x] \leftarrow \operatorname{parent}[y] ; \quad\) parent \([x]\) is correct
    6: if parent \([y]=\) null then
    7: \(\quad \operatorname{root}[T] \leftarrow x\)
    8: else
    9: if \(y=\operatorname{left}[\operatorname{parent}[y]]\) then
10: \(\quad\) left[parent \([y]] \leftarrow x\)
11: else
12: \(\quad \operatorname{right}[\) parent \([y]] \leftarrow x\)
    fix pointer to \(x\)
13: if \(y \neq z\) then copy \(y\)-data to \(z\)
```


Balanced Binary Search Trees

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps
similar: SPLAY trees.

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

7.2 Red Black Trees

Lemma 12

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 13

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

7.2 Red Black Trees

Lemma 12

A red-black tree with n internal nodes has height at most
$\mathcal{O}(\log n)$.

Definition 13

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:
Lemma 14
A sub-tree of black height bh (v) in a red black tree contains at least $2^{\text {bh(v) }}-1$ internal vertices.

7.2 Red Black Trees

Proof of Lemma 14.

7.2 Red Black Trees

Proof of Lemma 14.
Induction on the height of v.

7.2 Red Black Trees

Proof of Lemma 14.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.

7.2 Red Black Trees

Proof of Lemma 14.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .

7.2 Red Black Trees

Proof of Lemma 14.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .
- The sub-tree rooted at v contains $0=2^{\text {bh }(v)}-1$ inner vertices.

7.2 Red Black Trees

Proof (cont.)

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children (c_{1}, c_{2}) either have $\operatorname{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children $\left(c_{1}, c_{2}\right)$ either have $\operatorname{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\mathrm{bh}(v)-1}-1$ internal vertices.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children (c_{1}, c_{2}) either have $\operatorname{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\operatorname{bh}\left(c_{i}\right)=\operatorname{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\mathrm{bh}(v)-1}-1$ internal vertices.
- Then T_{v} contains at least $2\left(2^{\mathrm{bh}(v)-1}-1\right)+1 \geq 2^{\mathrm{bh}(v)}-1$ vertices.

7.2 Red Black Trees

Proof of Lemma 12.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \leq n$.

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \leq n$.

Hence, $h \leq 2 \log (n+1)=\mathcal{O}(\log n)$.

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)
If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[ \(z\) ]]
    4: if \(\operatorname{col}[\) uncle \(]=\) red then
    5:
    6:
    7: else
    8:
    9:
10:
11:
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then \(z\) in left subtree of grandparent
        uncle \(\leftarrow \operatorname{right}[\) grandparent \([z]\) ]
        if \(\operatorname{col}[\) uncle] \(=\) red then
            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
            \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
    if \(z=\operatorname{right}[\) parent \([z]]\) then
        \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}\);
    RightRotate(gp[z]);
            else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent \([z]]\)
    4: if col[uncle] = red then
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
    \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
    if \(z=\operatorname{right}[\) parent \([z]]\) then
    \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z) ;\)
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}\);
    RightRotate(gp[z]);
    else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[z]]
    4: if \(\operatorname{col}[\) uncle \(]=\) red then
    5: \(\quad \operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
    \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
    Case 2: uncle black
8: \(\quad\) if \(z=\operatorname{right}[\) parent \([z]]\) then
9:
    \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z) ;\)
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red;
11:
    RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[ \(z\) ]]
    4: if \(\operatorname{col}[\) uncle \(]=\) red then
            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
            \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
                else
            if \(z=\operatorname{right}[\) parent \([z]]\) then
                \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
                            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}\);
                            RightRotate(gp[z]);
                    else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[ \(z\) ]]
    4: if \(\operatorname{col}[\) uncle \(]=\) red then
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
    \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
    if \(z=\operatorname{right}[\) parent \([z]]\) then
    \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z) ;\)
    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red; \(2 \mathrm{~b}: z\) left child
11: RightRotate (gp[z]);
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Case 1: Red Uncle

1. recolour

Case 1: Red Uncle

1. recolour

Case 1: Red Uncle

1. recolour
2. move z to grand-parent

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z
4. you made progress

Case 2 b: Black uncle and z is left child

Case 2 b: Black uncle and z is left child

Case 2b: Black uncle and z is left child

1. rotate around grandparent

Case 2 b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds

Case 2b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds
3. you have a red black tree

Case 2a: Black uncle and z is right child

Case 2a: Black uncle and z is right child

Case 2a: Black uncle and z is right child

1. rotate around parent

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards
3. you have Case 2b.

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Performing Case 1 at most $\mathcal{O}(\log n)$ times and every other case at most once, we get a red-black tree. Hence $\mathcal{O}(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Delete

Red Black Trees: Delete

First do a standard delete.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Red Black Trees: Delete

Red Black Trees: Delete

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:

Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Case 1 : Sibling of z is red

Case 1: Sibling of z is red

Case 1 : Sibling of z is red

1. left-rotate around parent of z

Case 1 : Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)
4. Case 2 (special), or Case 3, or Case 4

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

1. re-color node c

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress
5. if b is red we color it black and are done

Case 3: Sibling black with one black child to the right

Again the blue color of \bar{b} indicates that
it can either be black or red.

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolor c and d

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolor c and d
3. new sibling is black with red right child (Case 4)

Case 4: Sibling is black with red right child

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b .

Case 4: Sibling is black with red right child

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b .

Case 4: Sibling is black with red right child

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.

1. left-rotate around b

Case 4: Sibling is black with red right child

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.

1. left-rotate around b
2. remove the fake black unit

Case 4: Sibling is black with red right child

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.

1. left-rotate around b
2. remove the fake black unit
3. recolor nodes b, c, and e

Case 4: Sibling is black with red right child

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.

1. left-rotate around b
2. remove the fake black unit
3. recolor nodes b, c, and e
4. you have a valid red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Performing Case 2 at most $\mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $\mathcal{O}(\log n)$ re-colorings and at most 3 rotations.

Splay Trees

Disadvantage of balanced search trees:

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; $\operatorname{splay}(x)$ repeated accesses are faster

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; $\operatorname{splay}(x)$ repeated accesses are faster
- only amortized guarantee

Splay Trees

Disadvantage of balanced search trees:

- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:

+ after access, an element is moved to the root; $\operatorname{splay}(x)$ repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

Splay Trees

find (x)

- search for x according to a search tree
- let \bar{x} be last element on search-path
- $\operatorname{splay}(\bar{x})$

Splay Trees

insert (x)

- search for x; \bar{x} is last visited element during search (successer or predecessor of x)
- $\operatorname{splay}(\bar{x})$ moves \bar{x} to the root
- insert x as new root

Splay Trees

delete (x)

- search for $x ; \operatorname{splay}(x)$; remove x
- search largest element \bar{x} in A
- $\operatorname{splay}(\bar{x})$ (on subtree A)
- connect root of B as right child of \bar{x}

Move to Root

How to bring element to root?

- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- if x is left child do right rotation otw. left rotation

Splay: Zig Case

better option splay(x):

- zig case: if x is child of root do left rotation or right rotation around parent

Splay: Zigzag Case

better option splay(x):

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left rotation)

Double Rotations

Splay: Zigzig Case

better option splay (x) :

- zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)
- do right roation around grand-parent followed by right rotation around parent (resp. left rotations)

Splay vs. Move to Root

Static Optimality

Suppose we have a sequence of m find-operations. find (x) appears h_{x} times in this sequence.

The cost of a static search tree T is:

$$
\operatorname{cost}(T)=m+\sum_{x} h_{x} \operatorname{depth}_{T}(x)
$$

The total cost for processing the sequence on a splay-tree is $\mathcal{O}\left(\operatorname{cost}\left(T_{\min }\right)\right)$, where $T_{\text {min }}$ is an optimal static search tree.

Dynamic Optimality

Let S be a sequence with m find-operations.
Let A be a data-structure based on a search tree:

- the cost for accessing element x is $1+\operatorname{depth}(x)$;
- after accessing x the tree may be re-arranged through rotations;

Conjecture:
A splay tree that only contains elements from S has cost $\mathcal{O}(\operatorname{cost}(A, S))$, for processing S.

Lemma 15

Splay Trees have an amortized running time of $\mathcal{O}(\log n)$ for all operations.

Amortized Analysis

Definition 16

A data structure with operations $\mathrm{op}_{1}(), \ldots, \mathrm{op}_{k}()$ has amortized running times t_{1}, \ldots, t_{k} for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_{i} denote the number of occurences of $\mathrm{op}_{i}()$ within this sequence. Then the actual running time must be at most $\sum_{i} k_{i} \cdot t_{i}(n)$.

Potential Method

Introduce a potential for the data structure.

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\sum_{i=1}^{k} c_{i}
$$

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} c_{i}+\Phi\left(D_{k}\right)-\Phi\left(D_{0}\right)
$$

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} c_{i}+\Phi\left(D_{k}\right)-\Phi\left(D_{0}\right)=\sum_{i=1}^{k} \hat{c}_{i}
$$

This means the amortized costs can be used to derive a bound on the total cost.

Example: Stack

Stack

- S. push ()
- S. pop()
- S. multipop (k) : removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Example: Stack

Stack

- S. push()
- S. pop()
- S. multipop (k) : removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1.
- S.pop(): cost 1 .
- S. multipop $(k):$ cost $\min \{\operatorname{size}, k\}=k$.

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S.push(): cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S. push(): cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

- S. pop(): cost

$$
\hat{C}_{\text {pop }}=C_{\text {pop }}+\Delta \Phi=1-1 \leq 0 .
$$

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S. push(): cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

- S. pop(): cost

$$
\hat{C}_{\mathrm{pop}}=C_{\mathrm{pop}}+\Delta \Phi=1-1 \leq 0 .
$$

- S. multipop (k): cost

$$
\hat{C}_{\mathrm{mp}}=C_{\mathrm{mp}}+\Delta \Phi=\min \{\text { size }, k\}-\min \{\text { size }, k\} \leq 0 .
$$

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1 : cost 1 .
- Changing bit from 1 to 0 : cost 1 .
- Increment: cost is $k+1$, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has $k=1$).

Example: Binary Counter

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

- Changing bit from 1 to 0 :

$$
\hat{C}_{1 \rightarrow 0}=C_{1 \rightarrow 0}+\Delta \Phi=1-1 \leq 0 .
$$

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

- Changing bit from 1 to 0 :

$$
\hat{C}_{1 \rightarrow 0}=C_{1 \rightarrow 0}+\Delta \Phi=1-1 \leq 0 .
$$

- Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k ($1 \rightarrow 0$)-operations, and one $(0 \rightarrow 1)$-operation.

Hence, the amortized cost is $k \hat{C}_{1 \rightarrow 0}+\hat{C}_{0 \rightarrow 1} \leq 2$.

Splay Trees

potential function for splay trees:
$-\operatorname{size} \mathrm{s}(x)=\left|T_{x}\right|$
$-\operatorname{rank} \mathrm{r}(x)=\log _{2}(s(x))$

- $\Phi(T)=\sum_{v \in T} r(v)$
amortized cost $=$ real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

Splay: Zig Case

$\Delta \Phi=$

Splay: Zig Case

$$
\Delta \Phi=r^{\prime}(x)+r^{\prime}(p)-r(x)-r(p)
$$

Splay: Zig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)-r(x)-r(p) \\
& =r^{\prime}(p)-r(x)
\end{aligned}
$$

Splay: Zig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)-r(x)-r(p) \\
& =r^{\prime}(p)-r(x) \\
& \leq r^{\prime}(x)-r(x)
\end{aligned}
$$

Splay: Zig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)-r(x)-r(p) \\
& =r^{\prime}(p)-r(x) \\
& \leq r^{\prime}(x)-r(x) \\
& \operatorname{cost}_{\mathrm{zig}} \leq 1+3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzig Case

$\Delta \Phi=$

Splay: Zigzig Case

$$
\Delta \Phi=r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g)
$$

Splay: Zigzig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(x)+r^{\prime}(g)-r(x)-r(x)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(x)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(x)+r^{\prime}(g)+r(x)-3 r^{\prime}(x)+3 r^{\prime}(x)-r(x)-2 r(x)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(x)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(x)+r^{\prime}(g)+r(x)-3 r^{\prime}(x)+3 r^{\prime}(x)-r(x)-2 r(x) \\
& =-2 r^{\prime}(x)+r^{\prime}(g)+r(x)+3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(x)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(x)+r^{\prime}(g)+r(x)-3 r^{\prime}(x)+3 r^{\prime}(x)-r(x)-2 r(x) \\
& =-2 r^{\prime}(x)+r^{\prime}(g)+r(x)+3\left(r^{\prime}(x)-r(x)\right) \\
& \leq-2+3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(x)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(x)+r^{\prime}(g)+r(x)-3 r^{\prime}(x)+3 r^{\prime}(x)-r(x)-2 r(x) \\
& =-2 r^{\prime}(x)+r^{\prime}(g)+r(x)+3\left(r^{\prime}(x)-r(x)\right) \\
& \leq-2+3\left(r^{\prime}(x)-r(x)\right) \Rightarrow \operatorname{cost}_{\text {zigzig }} \leq 3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzig Case

Splay: Zigzig Case

$$
\begin{aligned}
\frac{1}{2}(r(x) & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log (s(x))+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\frac{1}{2}(r(x) & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log (s(x))+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& =\frac{1}{2} \log \left(\frac{s(x)}{s^{\prime}(x)}\right)+\frac{1}{2} \log \left(\frac{s^{\prime}(g)}{s^{\prime}(x)}\right)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\frac{1}{2}(r(x) & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log (s(x))+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& =\frac{1}{2} \log \left(\frac{s(x)}{s^{\prime}(x)}\right)+\frac{1}{2} \log \left(\frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \\
& \leq \log \left(\frac{1}{2} \frac{s(x)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\frac{1}{2}(r(x) & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log (s(x))+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& =\frac{1}{2} \log \left(\frac{s(x)}{s^{\prime}(x)}\right)+\frac{1}{2} \log \left(\frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \\
& \leq \log \left(\frac{1}{2} \frac{s(x)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \leq \log \left(\frac{1}{2}\right)
\end{aligned}
$$

Splay: Zigzig Case

$$
\begin{aligned}
\frac{1}{2}(r(x) & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log (s(x))+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& =\frac{1}{2} \log \left(\frac{s(x)}{s^{\prime}(x)}\right)+\frac{1}{2} \log \left(\frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \\
& \leq \log \left(\frac{1}{2} \frac{s(x)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \leq \log \left(\frac{1}{2}\right)=-1
\end{aligned}
$$

Splay: Zigzag Case

$\Delta \Phi=$

Splay: Zigzag Case

$$
\Delta \Phi=r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g)
$$

Splay: Zigzag Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(p)+r^{\prime}(g)-r(x)-r(x)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(p)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(p)+r^{\prime}(g)-2 r^{\prime}(x)+2 r^{\prime}(x)-2 r(x)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(p)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(p)+r^{\prime}(g)-2 r^{\prime}(x)+2 r^{\prime}(x)-2 r(x) \\
& \leq-2+2\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(p)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(p)+r^{\prime}(g)-2 r^{\prime}(x)+2 r^{\prime}(x)-2 r(x) \\
& \leq-2+2\left(r^{\prime}(x)-r(x)\right) \Rightarrow \operatorname{cost}_{z i g z a g} \leq 3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzag Case

Splay: Zigzag Case

$$
\begin{aligned}
\frac{1}{2}\left(r^{\prime}(p)\right. & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log \left(s^{\prime}(p)\right)+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\frac{1}{2}\left(r^{\prime}(p)\right. & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log \left(s^{\prime}(p)\right)+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& \leq \log \left(\frac{1}{2} \frac{s^{\prime}(p)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\frac{1}{2}\left(r^{\prime}(p)\right. & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log \left(s^{\prime}(p)\right)+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& \leq \log \left(\frac{1}{2} \frac{s^{\prime}(p)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \leq \log \left(\frac{1}{2}\right)
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\frac{1}{2}\left(r^{\prime}(p)\right. & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log \left(s^{\prime}(p)\right)+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& \leq \log \left(\frac{1}{2} \frac{s^{\prime}(p)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \leq \log \left(\frac{1}{2}\right)=-1
\end{aligned}
$$

Amortized cost of the whole splay operation:

$$
\begin{aligned}
& \leq 1+1+\sum_{\text {steps } t} 3\left(r_{t}(x)-r_{t-1}(x)\right) \\
& =2+r(\text { root })-r_{0}(x) \\
& \leq \mathcal{O}(\log n)
\end{aligned}
$$

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

- Insert (x) : insert element x.
- Search (k) : search for element with key k.
- Delete (x) : delete element referenced by pointer x.
- find-by-rank (ℓ) : return the ℓ-th element; return "error" if the data-structure contains less than ℓ elements.

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

- Insert (x) : insert element x.
- Search(k): search for element with key k.
- Delete (x) : delete element referenced by pointer x.
- find-by-rank (ℓ) : return the ℓ-th element; return "error" if the data-structure contains less than ℓ elements.

Augment an existing data-structure instead of developing a new one.

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure
3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure
3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
4. develop the new operations

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure.

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.
3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
4. How does find-by-rank work?

Find-by-rank(k):= Select(root, k) with

```
Algorithm 11 Select( }x,i
    1: if }x=\mathrm{ null then return error
    2: if left[x] # null then }r\leftarrow\operatorname{left[x]. size +1 else }r\leftarrow
    3: if i=r then return }
    4: if i<r then
    5: return Select(left[x],i)
    6: else
    7: return Select (right[x],i-r)
```


Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Select(23, 14)

Select (x, i)

Select(Bㅗ, 14)

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

Select (x, i)

Select (20, 1)

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search(k): Nothing to do.

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search(k): Nothing to do.
Insert (x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search(k): Nothing to do.
Insert (\boldsymbol{x}): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete (\boldsymbol{x}) : Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:

The nodes x and z are the only nodes changing their size-fields. The new size-fields can be computed locally from the size-fields of the children.

$7.5(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

7.5 ($a, b)$-trees

Definition 17

For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root

7.5 ($a, b)$-trees

Definition 17

For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children

$7.5(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty

$7.5(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)

$7.5(a, b)$-trees

Definition 17
For $b \geq 2 a-1$ an (a, b)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex v has at least a and at most b children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)
5. there is a special dummy leaf node with key-value ∞

7.5 ($a, b)$-trees

Each internal node v with $d(v)$ children stores $d-1$ keys k_{1}, \ldots, k_{d-1}. The i-th subtree of v fulfills

$$
k_{i-1}<\text { key in } i \text {-th sub-tree } \leq k_{i},
$$

where we use $k_{0}=-\infty$ and $k_{d}=\infty$.

7.5 ($a, b)$-trees

Example 18

7.5 ($a, b)$-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.

7.5 ($a, b)$-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.

$7.5(a, b)$-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.

$7.5(a, b)$-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B^{+}tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.

$7.5(a, b)$-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which $b=2 a$ are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B^{+}tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B^{*} tree requires that a node is at least $2 / 3$-full as opposed to $1 / 2$-full (the requirement of a B-tree).

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

$$
\text { 1. } 2 a^{h-1} \leq n+1 \leq b^{h}
$$

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

$$
\text { 1. } 2 a^{h-1} \leq n+1 \leq b^{h}
$$

2. $\log _{b}(n+1) \leq h \leq 1+\log _{a}\left(\frac{n+1}{2}\right)$

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

$$
\text { 1. } 2 a^{h-1} \leq n+1 \leq b^{h}
$$

2. $\log _{b}(n+1) \leq h \leq 1+\log _{a}\left(\frac{n+1}{2}\right)$

Proof.

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq 1+\log _{a}\left(\frac{n+1}{2}\right)$

Proof.

- If $n>0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2 a^{h-1}$.

Lemma 19

Let T be an (a, b)-tree for $n>0$ elements (i.e., $n+1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2 a^{h-1} \leq n+1 \leq b^{h}$
2. $\log _{b}(n+1) \leq h \leq 1+\log _{a}\left(\frac{n+1}{2}\right)$

Proof.

- If $n>0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2 a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^{h}.

Search

Search

Search (8)

Search

Search (8)

Search

Search (19)

Search

Search (19)

Search

The search is straightforward. It is only important that you need to go all the way to the leaf.

Search

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h)=\mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Insert

Insert element x :

- Follow the path as if searching for key $[x]$.

Insert

Insert element x :

- Follow the path as if searching for key $[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.

Insert

Insert element x :

- Follow the path as if searching for $\operatorname{key}[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add $\operatorname{key}[x]$ to the key-list of the last internal node v on the path.

Insert

Insert element x :

- Follow the path as if searching for $\operatorname{key}[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add $\operatorname{key}[x]$ to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance (v).

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and $v_{2} . v_{1}$ gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and $v_{2} . v_{1}$ gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and $v_{2} . v_{1}$ gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at most $\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b$ (since $b \geq 2$).

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and $v_{2} . v_{1}$ gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at most $\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b$ (since $b \geq 2$).
- The key k_{j} is promoted to the parent of v. The current pointer to v is altered to point to v_{1}, and a new pointer (to the right of k_{j}) in the parent is added to point to v_{2}.

Insert

Rebalance (v) :

- Let $k_{i}, i=1, \ldots, b$ denote the keys stored in v.
- Let $j:=\left\lfloor\frac{b+1}{2}\right\rfloor$ be the middle element.
- Create two nodes v_{1}, and $v_{2} . v_{1}$ gets all keys k_{1}, \ldots, k_{j-1} and v_{2} gets keys k_{j+1}, \ldots, k_{b}.
- Both nodes get at least $\left\lfloor\frac{b-1}{2}\right\rfloor$ keys, and have therefore degree at least $\left\lfloor\frac{b-1}{2}\right\rfloor+1 \geq a$ since $b \geq 2 a-1$.
- They get at most $\left\lceil\frac{b-1}{2}\right\rceil$ keys, and have therefore degree at most $\left\lceil\frac{b-1}{2}\right\rceil+1 \leq b$ (since $b \geq 2$).
- The key k_{j} is promoted to the parent of v. The current pointer to v is altered to point to v_{1}, and a new pointer (to the right of k_{j}) in the parent is added to point to v_{2}.
- Then, re-balance the parent.

Insert

Insert

Insert(8)

Insert

Insert

Insert(6)

Insert

Insert(6)

Insert

Insert(6)

Insert

Insert(6)

Insert

Insert(7)

Insert

Insert(7)

Delete

Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If $\operatorname{key}[x]$ is contained in v, remove the key from v, and delete the leaf vertex.

Delete

Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If $\operatorname{key}[x]$ is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).

Delete

Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If $\operatorname{key}[x]$ is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- If now the number of keys in v is below $a-1$ perform Rebalance' (v).

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most $(a-2)+(a-1)+1$ keys, and has therefore at most $2 a-1 \leq b$ successors.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most $(a-2)+(a-1)+1$ keys, and has therefore at most $2 a-1 \leq b$ successors.
- Then rebalance the parent.

Delete

Rebalance' (v) :

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most $(a-2)+(a-1)+1$ keys, and has therefore at most $2 a-1 \leq b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Delete

Delete

Delete(10)

Delete

Delete(10)

Delete

Delete(10)

Delete

Delete

Delete(14)

Delete

Delete

Delete(3)

Delete

Delete

Delete(1)

Delete

Delete(1)

Delete

Delete(1)

Delete

$7.5(a, b)$-trees
11. Apr. 2018

Delete

Delete(19)

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(2, 4) -trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2, 4)-tree.

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.6 Skip Lists

How can we improve the search-operation?

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $\left|L_{1}\right|+\frac{\left|L_{0}\right|}{\left|L_{1}\right|}$ (ignoring additive constants)

7.6 Skip Lists

How can we improve the search-operation?
Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $\left|L_{1}\right|+\frac{\left|L_{0}\right|}{\left|L_{1}\right|}$ (ignoring additive constants)
Choose $\left|L_{1}\right|=\sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.
$\operatorname{Search}(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.

7.6 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.

Search $(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.
- At most $\left|L_{k}\right|+\sum_{i=1}^{k} \frac{L_{i-1}}{L_{i}}+3(k+1)$ steps.

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$.

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$. Choose $r=n^{\frac{1}{k+1}}$. Then

$$
r^{-k} n+k r
$$

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$. Choose $r=n^{\frac{1}{k+1}}$. Then

$$
r^{-k} n+k r=\left(n^{\frac{1}{k+1}}\right)^{-k} n+k n^{\frac{1}{k+1}}
$$

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$. Choose $r=n^{\frac{1}{k+1}}$. Then

$$
\begin{aligned}
r^{-k} n+k r & =\left(n^{\frac{1}{k+1}}\right)^{-k} n+k n^{\frac{1}{k+1}} \\
& =n^{1-\frac{k}{k+1}}+k n^{\frac{1}{k+1}}
\end{aligned}
$$

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$. Choose $r=n^{\frac{1}{k+1}}$. Then

$$
\begin{aligned}
r^{-k} n+k r & =\left(n^{\frac{1}{k+1}}\right)^{-k} n+k n^{\frac{1}{k+1}} \\
& =n^{1-\frac{k}{k+1}}+k n^{\frac{1}{k+1}} \\
& =(k+1) n^{\frac{1}{k+1}}
\end{aligned}
$$

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$.
Choose $r=n^{\frac{1}{k+1}}$. Then

$$
\begin{aligned}
r^{-k} n+k r & =\left(n^{\frac{1}{k+1}}\right)^{-k} n+k n^{\frac{1}{k+1}} \\
& =n^{1-\frac{k}{k+1}}+k n^{\frac{1}{k+1}} \\
& =(k+1) n^{\frac{1}{k+1}}
\end{aligned}
$$

Choosing $k=\Theta(\log n)$ gives a logarithmic running time.

7.6 Skip Lists

How to do insert and delete?

7.6 Skip Lists

How to do insert and delete?

- If we want that in L_{i} we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

7.6 Skip Lists

How to do insert and delete?

- If we want that in L_{i} we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

7.6 Skip Lists

Insert:

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.

7.6 Skip Lists

Insert (35):

High Probability

Definition 20 (High Probability)

We say a randomized algorithm has running time $\mathcal{O}(\log n)$ with high probability if for any constant α the running time is at most
$\mathcal{O}(\log n)$ with probability at least $1-\frac{1}{n^{\alpha}}$.

High Probability

Definition 20 (High Probability)

We say a randomized algorithm has running time $\mathcal{O}(\log n)$ with high probability if for any constant α the running time is at most
$\mathcal{O}(\log n)$ with probability at least $1-\frac{1}{n^{\alpha}}$.
Here the \mathcal{O}-notation hides a constant that may depend on α.

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_{i} hold is at least

$$
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]
$$

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_{i} hold is at least

$$
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]=1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right]
$$

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \geq 1-n^{c} \cdot n^{-\alpha}
\end{aligned}
$$

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \geq 1-n^{c} \cdot n^{-\alpha} \\
& =1-n^{c-\alpha}
\end{aligned}
$$

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}$, $\ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \geq 1-n^{c} \cdot n^{-\alpha} \\
& =1-n^{c-\alpha}
\end{aligned}
$$

This means $\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]$ holds with high probability.

7.6 Skip Lists

Lemma 21

A search (and, hence, also insert and delete) in a skip list with n elements takes time $\mathcal{O}(\operatorname{logn})$ with high probability (w. h. p.).

7.6 Skip Lists

Backward analysis:

$-\infty \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow \leftrightarrow 26 \leftrightarrow 46$

7.6 Skip Lists

Backward analysis:

$-\infty \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow 4 \leftrightarrow \leftrightarrow 26 \leftrightarrow 46$

7.6 Skip Lists

Backward analysis:

7.6 Skip Lists

Backward analysis:

7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

7.6 Skip Lists

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.

7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

7.6 Skip Lists

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\binom{n}{k}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n \cdot \ldots \cdot(n-k+1)}{k!}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n \cdot \ldots \cdot(n-k+1)}{k!} \leq \frac{n^{k}}{k!}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n \cdot \ldots \cdot(n-k+1)}{k!} \leq \frac{n^{k}}{k!}=\frac{n^{k} \cdot k^{k}}{k^{k} \cdot k!}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n \cdot \ldots \cdot(n-k+1)}{k!} \leq \frac{n^{k}}{k!}=\frac{n^{k} \cdot k^{k}}{k^{k} \cdot k!}
$$

$$
=\left(\frac{n}{k}\right)^{k} \cdot \frac{k^{k}}{k!}
$$

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k}
$$

$$
\binom{n}{k}=\frac{n \cdot \ldots \cdot(n-k+1)}{k!} \leq \frac{n^{k}}{k!}=\frac{n^{k} \cdot k^{k}}{k^{k} \cdot k!}
$$

$$
=\left(\frac{n}{k}\right)^{k} \cdot \frac{k^{k}}{k!} \leq\left(\frac{e n}{k}\right)^{k}
$$

7.6 Skip Lists

7.6 Skip Lists

Let $E_{z, k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_{k}.

7.6 Skip Lists

Let $E_{z, k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_{k}.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

7.6 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right]
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

7.6 Skip Lists

$$
\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[\text { at most } k \text { heads in } z \text { trials }]
$$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

now choosing $\beta=6 \alpha$ gives

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

7.6 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials]

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

for $\alpha \geq 1$.

7.6 Skip Lists

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold.

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold. Hence,
$\operatorname{Pr}[$ search requires z steps]

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold. Hence,
$\operatorname{Pr}[$ search requires z steps $] \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right]$

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold. Hence,

$$
\begin{aligned}
\operatorname{Pr}[\text { search requires } z \text { steps }] & \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right] \\
& \leq n^{-\alpha}+n^{-(\gamma-1)}
\end{aligned}
$$

7.6 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold. Hence,

$$
\begin{aligned}
\operatorname{Pr}[\text { search requires } z \text { steps }] & \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right] \\
& \leq n^{-\alpha}+n^{-(\gamma-1)}
\end{aligned}
$$

This means, the search requires at most z steps, w. h. p.

7.7 Hashing

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- S. $\operatorname{search}(k)$: Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

7.7 Hashing

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- S. $\operatorname{search}(k)$: Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

7.7 Hashing

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- $S . \operatorname{search}(k)$: Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

7.7 Hashing

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- S. $\operatorname{search}(k)$: Return a pointer to an element e with $\operatorname{key}[e]=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function h should fulfill:

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

Direct Addressing

Ideally the hash function maps all keys to different memory locations.

This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Such a hash function h is called a perfect hash function for set S.

Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.
Hence, there may be two elements k_{1}, k_{2} from the set S that map to the same memory location (i.e., $h\left(k_{1}\right)=h\left(k_{2}\right)$). This is called a collision.

Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Lemma 22

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$
1-e^{-\frac{m(m-1)}{2 n}} \approx 1-e^{-\frac{m^{2}}{2 n}}
$$

Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Lemma 22

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$
1-e^{-\frac{m(m-1)}{2 n}} \approx 1-e^{-\frac{m^{2}}{2 n}} .
$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow[0, \ldots, n-1]$.

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\operatorname{Pr}\left[A_{m, n}\right]
$$

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\operatorname{Pr}\left[A_{m, n}\right]=\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}
$$

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\operatorname{Pr}\left[A_{m, n}\right]=\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right)
$$

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}
\end{aligned}
$$

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}
\end{aligned}
$$

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}=e^{-\frac{m(m-1)}{2 n}}
\end{aligned}
$$

Collisions

Proof.

Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}=e^{-\frac{m(m-1)}{2 n}} .
\end{aligned}
$$

Here the first equality follows since the ℓ-th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

Collisions

The inequality $1-x \leq e^{-x}$ is derived by stopping the Taylor-expansion of e^{-x} after the second term.

Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

- Access: compute $h(x)$ and search list for key $[x]$.
- Insert: insert at the front of the list.

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha:=\frac{m}{n}$, the so-called fill factor of the hash-table.

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha:=\frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$.

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$
A^{-}=1+\alpha
$$

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the indicator variable for the event that k_{i} and k_{j} hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the indicator variable for the event that k_{i} and k_{j} hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

The expected successful search cost is

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]
$$

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the indicator variable for the event that k_{i} and k_{j} hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

The expected successful search cost is

$$
\text { keys before } k_{i}
$$

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]
$$

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the indicator variable for the event that k_{i} and k_{j} hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.

The expected successful search cost is

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]_{c o s t ~ f o r ~ k e y ~}^{k_{i}}
$$

Hashing with Chaining

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]
$$

Hashing with Chaining

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]=\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right)
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right)
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i)
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right)
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right) \\
& =1+\frac{m-1}{2 n}
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right) \\
& =1+\frac{m-1}{2 n}=1+\frac{\alpha}{2}-\frac{\alpha}{2 m}
\end{aligned}
$$

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right) \\
& =1+\frac{m-1}{2 n}=1+\frac{\alpha}{2}-\frac{\alpha}{2 m}
\end{aligned}
$$

Hence, the expected cost for a successful search is $A^{+} \leq 1+\frac{\alpha}{2}$.

Hashing with Chaining

Disadvantages:

- pointers increase memory requirements
- pointers may lead to bad cache efficiency

Advantages:

- no à priori limit on the number of elements
- deletion can be implemented efficiently
- by using balanced trees instead of linked list one can also obtain worst-case guarantees.

Open Addressing

Open Addressing

All objects are stored in the table itself.

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

Search (k) : Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

Search (\boldsymbol{k}) : Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$

Insert(\boldsymbol{x}): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n-1)$, and this slot is non-empty then your table is full.

Open Addressing

Choices for $h(k, j)$:

- Linear probing:
$h(k, i)=h(k)+i \bmod n$
(sometimes: $h(k, i)=h(k)+c i \bmod n$).

Open Addressing

Choices for $h(k, j)$:

- Linear probing:
$h(k, i)=h(k)+i \bmod n$
(sometimes: $h(k, i)=h(k)+c i \bmod n)$.
- Quadratic probing:
$h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n$.

Open Addressing

Choices for $h(k, j)$:

- Linear probing:
$h(k, i)=h(k)+i \bmod n$
(sometimes: $h(k, i)=h(k)+c i \bmod n$).
- Quadratic probing:
$h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n$.
- Double hashing:
$h(k, i)=h_{1}(k)+i h_{2}(k) \bmod n$.

Open Addressing

Choices for $h(k, j)$:

- Linear probing:
$h(k, i)=h(k)+i \bmod n$ (sometimes: $h(k, i)=h(k)+c i \bmod n)$.
- Quadratic probing:

$$
h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n .
$$

- Double hashing:
$h(k, i)=h_{1}(k)+i h_{2}(k) \bmod n$.

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_{2}(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_{1} and c_{2} have to be chosen carefully).

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 23

Let L be the method of linear probing for resolving collisions:

$$
\begin{aligned}
& L^{+} \approx \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right) \\
& L^{-} \approx \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)
\end{aligned}
$$

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 24

Let Q be the method of quadratic probing for resolving collisions:

$$
\begin{aligned}
& Q^{+} \approx 1+\ln \left(\frac{1}{1-\alpha}\right)-\frac{\alpha}{2} \\
& Q^{-} \approx \frac{1}{1-\alpha}+\ln \left(\frac{1}{1-\alpha}\right)-\alpha
\end{aligned}
$$

Double Hashing

- Any probe into the hash-table usually creates a cache-miss.

Double Hashing

- Any probe into the hash-table usually creates a cache-miss.

Lemma 25

Let A be the method of double hashing for resolving collisions:

$$
\begin{aligned}
& D^{+} \approx \frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right) \\
& D^{-} \approx \frac{1}{1-\alpha}
\end{aligned}
$$

Open Addressing

Some values:

$\boldsymbol{\alpha}$	Linear Probing		Quadratic Probing		Double Hashing	
	\boldsymbol{L}^{+}	\boldsymbol{L}^{-}	\boldsymbol{Q}^{+}	\boldsymbol{Q}^{-}	\boldsymbol{D}^{+}	\boldsymbol{D}^{-}
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20

Open Addressing

Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open Addressing scheme.

- The probe sequence $h(k, 0), h(k, 1), h(k, 2), \ldots$ is equally likely to be any permutation of $\langle 0,1, \ldots, n-1\rangle$.

Analysis of Idealized Open Address Hashing

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right]
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right]
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right]
\end{aligned}
$$

$$
\operatorname{Pr}[X \geq i]
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \\
& \ldots \cdot \operatorname{Pr}\left[A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
& \operatorname{Pr}[X \geq i]= \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap\right. & \left.\cdots \cap A_{i-1}\right] \\
= & \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \\
& \ldots \cdot \operatorname{Pr}\left[A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
\operatorname{Pr}[X \geq i]= & \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2} \\
\leq & \left(\frac{m}{n}\right)^{i-1}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap\right. & \left.\cdots \cap A_{i-1}\right] \\
= & \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \\
& \ldots \cdot \operatorname{Pr}\left[A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
\operatorname{Pr}[X \geq i]= & \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2} \\
\leq & \left(\frac{m}{n}\right)^{i-1}=\alpha^{i-1}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

$\mathrm{E}[X]$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i]
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
$$

$$
\frac{1}{1-\alpha}=1+\alpha+\alpha^{2}+\alpha^{3}+\ldots
$$

Analysis of Idealized Open Address Hashing

Analysis of Idealized Open Address Hashing

$i=1$

Analysis of Idealized Open Address Hashing

$$
i=2
$$

Analysis of Idealized Open Address Hashing

$$
i=3
$$

Analysis of Idealized Open Address Hashing

$i=4$

Analysis of Idealized Open Address Hashing

$i=1$

Analysis of Idealized Open Address Hashing

$$
i=2
$$

Analysis of Idealized Open Address Hashing

$$
i=3
$$

Analysis of Idealized Open Address Hashing

$i=4$

Analysis of Idealized Open Address Hashing

Analysis of Idealized Open Address Hashing

The j-th rectangle appears in both sums j times. (j times in the first due to multiplication with j; and j times in the second for summands $i=1,2, \ldots, j$)

Analysis of Idealized Open Address Hashing

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}=\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}=\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x=\frac{1}{\alpha} \ln \frac{n}{n-m}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x=\frac{1}{\alpha} \ln \frac{n}{n-m}=\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Deletions in Hashtables

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.

Deletions in Hashtables

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
- During an insertion if a deleted-marker is encountered an element can be inserted there.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
- During an insertion if a deleted-marker is encountered an element can be inserted there.
- During a search a deleted-marker must not be used to terminate the probe sequence.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
- During an insertion if a deleted-marker is encountered an element can be inserted there.
- During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
- During an insertion if a deleted-marker is encountered an element can be inserted there.
- During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.

Deletions for Linear Probing

- For Linear Probing one can delete elements without using deletion-markers.

Deletions for Linear Probing

- For Linear Probing one can delete elements without using deletion-markers.
- Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.

Deletions for Linear Probing

```
Algorithm 12 delete \((p)\)
    1: \(T[p] \leftarrow\) null
    2: \(p \leftarrow \operatorname{succ}(p)\)
    3: while \(T[p] \neq\) null do
    4: \(\quad y \leftarrow T[p]\)
    5: \(\quad T[p] \leftarrow\) null
    6: \(\quad p \leftarrow \operatorname{succ}(p)\)
    7: \(\quad \operatorname{insert}(y)\)
```

p is the index into the table-cell that contains the object to be deleted.

Deletions for Linear Probing

```
Algorithm 12 delete \((p)\)
    1: \(T[p] \leftarrow\) null
    2: \(p \leftarrow \operatorname{succ}(p)\)
    3: while \(T[p] \neq\) null do
4: \(\quad y \leftarrow T[p]\)
5: \(\quad T[p] \leftarrow\) null
6: \(\quad p \leftarrow \operatorname{succ}(p)\)
7: \(\quad \operatorname{insert}(y)\)
```

p is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

Universal Hashing

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow[0, \ldots, n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow[0, \ldots, n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set \mathcal{H} of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H}.

Universal Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right] \leq \frac{1}{n},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Universal Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right] \leq \frac{1}{n}
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.

Universal Hashing

Definition 27
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2 -independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in\{0, \ldots, n-1\} \operatorname{Pr}[h(u)=t]=\frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$, and for any two hash-positions t_{1}, t_{2} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge h\left(u_{2}\right)=t_{2}\right] \leq \frac{1}{n^{2}} .
$$

Universal Hashing

Definition 27

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2 -independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in\{0, \ldots, n-1\} \operatorname{Pr}[h(u)=t]=\frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$, and for any two hash-positions t_{1}, t_{2} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge h\left(u_{2}\right)=t_{2}\right] \leq \frac{1}{n^{2}} .
$$

This requirement clearly implies a universal hash-function.

Universal Hashing

Definition 28

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called k-independent if for any choice of $\ell \leq k$ distinct keys $u_{1}, \ldots, u_{\ell} \in U$, and for any set of ℓ not necessarily distinct hash-positions t_{1}, \ldots, t_{ℓ} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge \cdots \wedge h\left(u_{\ell}\right)=t_{\ell}\right] \leq \frac{1}{n^{\ell}},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Universal Hashing

Definition 29

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called (μ, k)-independent if for any choice of $\ell \leq k$ distinct keys $u_{1}, \ldots, u_{\ell} \in U$, and for any set of ℓ not necessarily distinct hash-positions t_{1}, \ldots, t_{ℓ} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge \cdots \wedge h\left(u_{\ell}\right)=t_{\ell}\right] \leq \frac{\mu}{n^{\ell}}
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Universal Hashing

Universal Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

Universal Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

Define

$$
h_{a, b}(x):=(a x+b \bmod p) \bmod n
$$

Universal Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

Define

$$
h_{a, b}(x):=(a x+b \bmod p) \bmod n
$$

Lemma 30

The class

$$
\mathcal{H}=\left\{h_{a, b} \mid a \in \mathbb{Z}_{p}^{*}, b \in \mathbb{Z}_{p}\right\}
$$

is a universal class of hash-functions from U to $\{0, \ldots, n-1\}$.

Universal Hashing

Universal Hashing

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

Universal Hashing

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

$$
\checkmark a x+b \not \equiv a y+b(\bmod p)
$$

Universal Hashing

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.
$-a x+b \neq a y+b(\bmod p)$

$$
\text { If } x \neq y \text { then }(x-y) \not \equiv 0(\bmod p) .
$$

Universal Hashing

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \neq a y+b(\bmod p)$

If $x \neq y$ then $(x-y) \not \equiv 0(\bmod p)$.
Multiplying with $a \not \equiv 0(\bmod p)$ gives

$$
a(x-y) \not \equiv 0 \quad(\bmod p)
$$

Universal Hashing

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \neq a y+b(\bmod p)$

$$
\text { If } x \neq y \text { then }(x-y) \not \equiv 0(\bmod p)
$$

Multiplying with $a \not \equiv 0(\bmod p)$ gives

$$
a(x-y) \not \equiv 0 \quad(\bmod p)
$$

where we use that \mathbb{Z}_{p} is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).

Universal Hashing

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to a different pair $\left(t_{x}, t_{y}\right)$ with $t_{x}:=a x+b$ and $t_{y}:=a y+b$.

Universal Hashing

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to a different pair $\left(t_{x}, t_{y}\right)$ with $t_{x}:=a x+b$ and $t_{y}:=a y+b$.

This holds because we can compute a and b when given t_{x} and t_{y} :

Universal Hashing

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to a different pair $\left(t_{x}, t_{y}\right)$ with $t_{x}:=a x+b$ and $t_{y}:=a y+b$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{align*}
t_{x} & \equiv a x+b \\
t_{y} & \equiv a y+b
\end{align*} r(\bmod p)
$$

Universal Hashing

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to a different pair $\left(t_{x}, t_{y}\right)$ with $t_{x}:=a x+b$ and $t_{y}:=a y+b$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{align*}
t_{x} & \equiv a x+b \\
t_{y} & \equiv a y+b \\
t_{x}-t_{y} & \equiv a(x-y) \\
t_{y} & \equiv a y+b
\end{align*}
$$

$(\bmod p)$

Universal Hashing

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to a different pair $\left(t_{x}, t_{y}\right)$ with $t_{x}:=a x+b$ and $t_{y}:=a y+b$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{align*}
t_{x} & \equiv a x+b & & (\bmod p) \\
t_{y} & \equiv a y+b & & (\bmod p) \\
t_{x}-t_{y} & \equiv a(x-y) & & (\bmod p) \\
t_{y} & \equiv a y+b & & (\bmod p) \\
a & \equiv\left(t_{x}-t_{y}\right)(x-y)^{-1} & & (\bmod p) \\
b & \equiv t_{y}-a y & & (\bmod p)
\end{align*}
$$

Universal Hashing

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $\bmod n$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $\bmod n$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $\bmod n$ operation?

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $\bmod n$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $\bmod n$ operation?
Fix a value t_{x}. There are $p-1$ possible values for choosing t_{y}.

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0)$ and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $\bmod n$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $\bmod n$ operation?
Fix a value t_{x}. There are $p-1$ possible values for choosing t_{y}.
From the range $0, \ldots, p-1$ the values $t_{\chi}, t_{\chi}+n, t_{\chi}+2 n, \ldots$ map to t_{x} after the modulo-operation. These are at most $\lceil p / n\rceil$ values.

Universal Hashing

Universal Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1
$$

Universal Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1
$$

Universal Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1 \leq \frac{p-1}{n}
$$

Universal Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1 \leq \frac{p-1}{n}
$$

possibilities for choosing t_{y} such that the final hash-value creates a collision.

Universal Hashing

As $t_{y} \neq t_{x}$ there are

$$
\left\lceil\frac{p}{n}\right\rceil-1 \leq \frac{p}{n}+\frac{n-1}{n}-1 \leq \frac{p-1}{n}
$$

possibilities for choosing t_{y} such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

Universal Hashing

Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{l}
t_{x} \bmod n=h_{1} \\
t_{y} \bmod n=h_{2}
\end{array}\right]
$$

Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\frac{\left\lfloor\frac{p}{n}\right\rfloor^{2}}{p(p-1)} \leq \operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{c}
t_{x} \bmod n=h_{1} \\
t_{y} \bmod n=h_{2}
\end{array}\right] \leq \frac{\left\lceil\frac{p}{n}\right\rceil^{2}}{p(p-1)}
$$

Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\frac{\left\lfloor\frac{p}{n}\right\rfloor^{2}}{p(p-1)} \leq \operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{c}
t_{x} \bmod n=h_{1} \\
t_{y} \bmod n=h_{2}
\end{array}\right] \leq \frac{\left\lceil\frac{p}{n}\right\rceil^{2}}{p(p-1)}
$$

Note that the middle is the probability that $h(x)=h_{1}$ and $h(y)=h_{2}$. The total number of choices for $\left(t_{x}, t_{y}\right)$ is $p(p-1)$. The number of choices for $t_{x}\left(t_{y}\right)$ such that $t_{x} \bmod n=h_{1}$ ($t_{y} \bmod n=h_{2}$) lies between $\left\lfloor\frac{p}{n}\right\rfloor$ and $\left\lceil\frac{p}{n}\right\rceil$.

Universal Hashing

Definition 31

Let $d \in \mathbb{N} ; q \geq(d+1) n$ be a prime; and let $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$. Define for $x \in\{0, \ldots, q-1\}$

$$
h_{\bar{a}}(x):=\left(\sum_{i=0}^{d} a_{i} x^{i} \bmod q\right) \bmod n
$$

Let $\mathcal{H}_{n}^{d}:=\left\{h_{\bar{a}} \mid \bar{a} \in\{0, \ldots, q-1\}^{d+1}\right\}$. The class \mathcal{H}_{n}^{d} is (e, $d+1$)-independent.

Note that in the previous case we had $d=1$ and chose $a_{d} \neq 0$.

Universal Hashing

Universal Hashing

For the coefficients $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$
f_{\bar{a}}(x)=\left(\sum_{i=0}^{d} a_{i} x^{i}\right) \bmod q
$$

Universal Hashing

For the coefficients $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$
f_{\bar{a}}(x)=\left(\sum_{i=0}^{d} a_{i} x^{i}\right) \bmod q
$$

The polynomial is defined by $d+1$ distinct points.

Universal Hashing

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

$$
\text { Let } A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i} \text { for all } i \in\{1, \ldots, \ell\}\right\}
$$

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then

$$
\begin{aligned}
& h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}}=f_{\bar{a}} \bmod n \text { and } \\
& \qquad f_{\bar{a}}\left(x_{i}\right) \in \underbrace{\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}}_{=: B_{i}}
\end{aligned}
$$

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then

$$
\begin{aligned}
& h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}}=f_{\bar{a}} \bmod n \text { and } \\
& \qquad f_{\bar{a}}\left(x_{i}\right) \in \underbrace{\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}}_{=: B_{i}}
\end{aligned}
$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing $d+1$ points.

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then

$$
h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}}=f_{\bar{a}} \bmod n \text { and }
$$

$$
f_{\bar{a}}\left(x_{i}\right) \in \underbrace{\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}}_{=: B_{i}}
$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing $d+1$ points.

We first fix the values for inputs x_{1}, \ldots, x_{ℓ}.

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then

$$
h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}}=f_{\bar{a}} \bmod n \text { and }
$$

$$
f_{\bar{a}}\left(x_{i}\right) \in \underbrace{\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}}_{=: B_{i}}
$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing $d+1$ points.

We first fix the values for inputs x_{1}, \ldots, x_{ℓ}.
We have

$$
\left|B_{1}\right| \cdot \ldots \cdot\left|B_{\ell}\right|
$$

possibilities to do this (so that $h_{\bar{a}}\left(x_{i}\right)=t_{i}$).

Universal Hashing

Now, we choose $d-\ell+1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Universal Hashing

Now, we choose $d-\ell+1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$
\left|B_{1}\right| \cdot \ldots \cdot\left|B_{\ell}\right| \cdot q^{d-\ell+1} \leq\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}
$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}}
$$

Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}}
$$

Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \leq\left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}}
$$

Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\begin{aligned}
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} & \leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \leq\left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\
& \leq\left(1+\frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}}
\end{aligned}
$$

Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\begin{aligned}
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} & \leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \leq\left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\
& \leq\left(1+\frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}}
\end{aligned}
$$

Universal Hashing

Therefore the probability of choosing $h_{\bar{\alpha}}$ from A_{ℓ} is only

$$
\begin{aligned}
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} & \leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \leq\left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\
& \leq\left(1+\frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}}
\end{aligned}
$$

This shows that the \mathcal{H} is $(e, d+1)$-universal.

The last step followed from $q \geq(d+1) n$, and $\ell \leq d+1$.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Perfect Hashing

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\text { \#Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

Perfect Hashing

Perfect Hashing

We can find such a hash-function by a few trials.

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of $n=m^{2}$ is very very high.

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of $n=m^{2}$ is very very high.
We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of $n=m^{2}$ is very very high.
We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_{j} denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_{j}^{2}. The second function can be chosen such that all elements are mapped to different locations.

Perfect Hashing

Perfect Hashing

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}\left(\sum_{j} m_{j}^{2}\right)$. Note that m_{j} is a random variable.

$$
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right]
$$

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}\left(\sum_{j} m_{j}^{2}\right)$. Note that m_{j} is a random variable.

$$
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right]=\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right]
$$

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}\left(\sum_{j} m_{j}^{2}\right)$. Note that m_{j} is a random variable.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}\left(\sum_{j} m_{j}^{2}\right)$. Note that m_{j} is a random variable.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}\left(\sum_{j} m_{j}^{2}\right)$. Note that m_{j} is a random variable.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$
=2\binom{m}{2} \frac{1}{m}+m=2 m-1
$$

Perfect Hashing

We need only $\mathcal{O}(m)$ time to construct a hash-function h with $\sum_{j} m_{j}^{2}=\mathcal{O}(4 m)$, because with probability at least $1 / 2$ a random function from a universal family will have this property.

Then we construct a hash-table h_{j} for every bucket. This takes expected time $\mathcal{O}\left(m_{j}\right)$ for every bucket. A random function h_{j} is collision-free with probability at least $1 / 2$. We need $\mathcal{O}\left(m_{j}\right)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!

Cuckoo Hashing

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.
- An object x is either stored at location $T_{1}\left[h_{1}(x)\right]$ or $T_{2}\left[h_{2}(x)\right]$.

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.
- An object x is either stored at location $T_{1}\left[h_{1}(x)\right]$ or $T_{2}\left[h_{2}(x)\right]$.
- A search clearly takes constant time if the above constraint is met.

Cuckoo Hashing

Insert:

\varnothing
\varnothing
x_{7}
\varnothing
\varnothing
x_{4}
x_{1}
\varnothing
\varnothing
T_{1}

\varnothing
\varnothing
x_{9}
\varnothing
\varnothing
x_{6}
\varnothing
x_{3}
\varnothing
T_{2}

Cuckoo Hashing

Insert:

$x \longrightarrow$| \varnothing |
| :---: |
| \varnothing |
| x_{7} |
| \varnothing |
| \varnothing |
| x_{4} |
| x_{1} |
| \varnothing |
| \varnothing |
| T_{1} |

\varnothing
\varnothing
x_{9}
\varnothing
\varnothing
x_{6}
\varnothing
x_{3}
\varnothing
T_{2}

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

Insert:

Cuckoo Hashing

```
Algorithm 13 Cuckoo-Insert ( \(x\) )
    1: if \(T_{1}\left[h_{1}(x)\right]=x \vee T_{2}\left[h_{2}(x)\right]=x\) then return
    2: steps \(\leftarrow 1\)
    3: while steps \(\leq\) maxsteps do
    4: \(\quad\) exchange \(x\) and \(T_{1}\left[h_{1}(x)\right]\)
    5: if \(x=\) null then return
    6: \(\quad\) exchange \(x\) and \(T_{2}\left[h_{2}(x)\right]\)
    7: if \(x=\) null then return
    8: \(\quad\) steps \(\leftarrow\) steps +1
    9: rehash() // change hash-functions; rehash everything
10: Cuckoo-Insert \((x)\)
```


Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.

Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.

Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because $x=$ null.

Cuckoo Hashing

Cuckoo Hashing

What is the expected time for an insert-operation?

Cuckoo Hashing

What is the expected time for an insert-operation?
We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that touches s different keys?

Cuckoo Hashing: Insert

Cuckoo Hashing

A cycle-structure of size s is defined by

Cuckoo Hashing

A cycle-structure of size s is defined by

- $s-1$ different cells (alternating btw. cells from T_{1} and T_{2}).

Cuckoo Hashing

A cycle-structure of size s is defined by

- $s-1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.

Cuckoo Hashing

A cycle-structure of size s is defined by

- $s-1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.

Cuckoo Hashing

A cycle-structure of size s is defined by

- $s-1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.

Cuckoo Hashing

A cycle-structure of size s is defined by

- $s-1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.
- One link represents key x; this is where the counting starts.

Cuckoo Hashing

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_{i} from T_{1} and a cell p_{j} from T_{2}) we have

$$
h_{1}\left(x_{\ell}\right)=p_{i} \quad \text { and } \quad h_{2}\left(x_{\ell}\right)=p_{j}
$$

Cuckoo Hashing

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_{i} from T_{1} and a cell p_{j} from T_{2}) we have

$$
h_{1}\left(x_{\ell}\right)=p_{i} \quad \text { and } \quad h_{2}\left(x_{\ell}\right)=p_{j}
$$

Observation:

If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \geq 3$.

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_{1}-cell?

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_{1}-cell?

This probability is at most $\frac{\mu}{n^{s}}$ since h_{1} is a (μ, s)-independent hash-function.

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_{1}-cell?

This probability is at most $\frac{\mu}{n^{s}}$ since h_{1} is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_{2}-cell?

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_{1}-cell?

This probability is at most $\frac{\mu}{n^{s}}$ since h_{1} is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_{2}-cell?

This probability is at most $\frac{\mu}{n^{s}}$ since h_{2} is a (μ, s)-independent hash-function.

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_{1}-cell?

This probability is at most $\frac{\mu}{n^{s}}$ since h_{1} is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_{2}-cell?

This probability is at most $\frac{\mu}{n^{s}}$ since h_{2} is a (μ, s)-independent hash-function.

These events are independent.

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

What is the probability that there exists an active cycle structure of size s ?

Cuckoo Hashing

The number of cycle-structures of size s is at most

$$
s^{3} \cdot n^{s-1} \cdot m^{s-1}
$$

Cuckoo Hashing

The number of cycle-structures of size s is at most

$$
s^{3} \cdot n^{s-1} \cdot m^{s-1}
$$

- There are at most s^{2} possibilities where to attach the forward and backward links.

Cuckoo Hashing

The number of cycle-structures of size s is at most

$$
s^{3} \cdot n^{s-1} \cdot m^{s-1}
$$

- There are at most s^{2} possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.

Cuckoo Hashing

The number of cycle-structures of size s is at most

$$
s^{3} \cdot n^{s-1} \cdot m^{s-1}
$$

- There are at most s^{2} possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.

Cuckoo Hashing

The number of cycle-structures of size s is at most

$$
s^{3} \cdot n^{s-1} \cdot m^{s-1}
$$

- There are at most s^{2} possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}}
$$

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}}=\frac{\mu^{2}}{n m} \sum_{s=3}^{\infty} s^{3}\left(\frac{m}{n}\right)^{s}
$$

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\begin{aligned}
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} & =\frac{\mu^{2}}{n m} \sum_{s=3}^{\infty} s^{3}\left(\frac{m}{n}\right)^{s} \\
& \leq \frac{\mu^{2}}{m^{2}} \sum_{s=3}^{\infty} s^{3}\left(\frac{1}{1+\epsilon}\right)^{s}
\end{aligned}
$$

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\begin{aligned}
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} & =\frac{\mu^{2}}{n m} \sum_{s=3}^{\infty} s^{3}\left(\frac{m}{n}\right)^{s} \\
& \leq \frac{\mu^{2}}{m^{2}} \sum_{s=3}^{\infty} s^{3}\left(\frac{1}{1+\epsilon}\right)^{s} \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
\end{aligned}
$$

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\begin{aligned}
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} & =\frac{\mu^{2}}{n m} \sum_{s=3}^{\infty} s^{3}\left(\frac{m}{n}\right)^{s} \\
& \leq \frac{\mu^{2}}{m^{2}} \sum_{s=3}^{\infty} s^{3}\left(\frac{1}{1+\epsilon}\right)^{s} \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
\end{aligned}
$$

Here we used the fact that $(1+\epsilon) m \leq n$.

Cuckoo Hashing

The probability that there exists an active cycle-structure is therefore at most

$$
\begin{aligned}
\sum_{s=3}^{\infty} s^{3} \cdot n^{s-1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} & =\frac{\mu^{2}}{n m} \sum_{s=3}^{\infty} s^{3}\left(\frac{m}{n}\right)^{s} \\
& \leq \frac{\mu^{2}}{m^{2}} \sum_{s=3}^{\infty} s^{3}\left(\frac{1}{1+\epsilon}\right)^{s} \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
\end{aligned}
$$

Here we used the fact that $(1+\epsilon) m \leq n$.

Hence,

$$
\operatorname{Pr}[\text { cycle }]=\mathcal{O}\left(\frac{1}{m^{2}}\right) .
$$

Cuckoo Hashing

Now, we analyze the probability that a phase is not successful without running into a closed cycle.

Cuckoo Hashing

Sequence of visited keys:
$x=x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{3}, x_{2}, x_{1}=x, x_{8}, x_{9}, \ldots$

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 32

If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
$x=x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i} \rightarrow x_{r} \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$
As $r \leq i-1$ the length p of the sequence is

$$
p=i+r+(j-i) \leq i+j-1 .
$$

Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
$x=x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i} \rightarrow x_{r} \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$
As $r \leq i-1$ the length p of the sequence is

$$
p=i+r+(j-i) \leq i+j-1
$$

Either sub-sequence $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i}$ or sub-sequence $x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$ has at least $\frac{p+2}{3}$ elements.

Cuckoo Hashing

A path-structure of size s is defined by

Cuckoo Hashing

A path-structure of size s is defined by

- $s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).

Cuckoo Hashing

A path-structure of size s is defined by

- $s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.

Cuckoo Hashing

A path-structure of size s is defined by

- $s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
- The leftmost cell is either from T_{1} or T_{2}.

Cuckoo Hashing

A path-structure is active if for every key x_{ℓ} (linking a cell p_{i} from T_{1} and a cell p_{j} from T_{2}) we have

$$
h_{1}\left(x_{\ell}\right)=p_{i} \quad \text { and } \quad h_{2}\left(x_{\ell}\right)=p_{j}
$$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size $(2 t+2) / 3$.

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 S}}$.

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most
$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}}$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1}
\end{aligned}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most
$2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}}$

$$
\leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
$$

Plugging in $s=(2 t+2) / 3$ gives

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Plugging in $s=(2 t+2) / 3$ gives

$$
\leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t+2) / 3-1}
$$

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Plugging in $s=(2 t+2) / 3$ gives

$$
\leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t+2) / 3-1}=2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$.

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\operatorname{Pr}[\text { unsuccessful | no cycle] }
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful| no cycle }] \\
& \quad \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right]
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful | no cycle }] \\
& \quad \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \quad \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1]
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1]
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell}
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}
\end{aligned}
$$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}
\end{aligned}
$$

by choosing $\ell \geq \log \left(\frac{1}{2 \mu^{2} m^{2}}\right) / \log \left(\frac{1}{1+\epsilon}\right)=\log \left(2 \mu^{2} m^{2}\right) / \log (1+\epsilon)$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most

$$
\begin{aligned}
& \operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \leq \operatorname{Pr}\left[\exists \text { active path-structure of size at least } \frac{2 \text { maxsteps }+2}{3}\right] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size at least } \ell+1] \\
& \leq \operatorname{Pr}[\exists \text { active path-structure of size exactly } \ell+1] \\
& \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}
\end{aligned}
$$

by choosing $\ell \geq \log \left(\frac{1}{2 \mu^{2} m^{2}}\right) / \log \left(\frac{1}{1+\epsilon}\right)=\log \left(2 \mu^{2} m^{2}\right) / \log (1+\epsilon)$
This gives maxsteps $=\Theta(\log m)$.

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\operatorname{Pr}[\text { successful }]=\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful | no cycle }]
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\begin{aligned}
\operatorname{Pr}[\text { successful }] & =\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \geq c \cdot \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\begin{aligned}
\operatorname{Pr}[\text { successful }] & =\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \geq c \cdot \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

for a suitable constant $c>0$.

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

```
E[number of steps | phase successful]
    \(=\sum_{t \geq 1} \operatorname{Pr}[\) search takes at least \(t\) steps \(\mid\) phase successful \(]\)
```


Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

```
E [number of steps | phase successful]
    \(=\sum_{t \geq 1} \operatorname{Pr}[\) search takes at least \(t\) steps \(\mid\) phase successful \(]\)
```

We have
$\operatorname{Pr}[$ search at least t steps | successful]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { successful }] \\
& \quad=\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { successful }] \\
& \quad=\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }] \\
& \quad \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { successful }] \\
&=\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }] \\
& \leq \frac{1}{C} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { no cycle }] \\
& \leq \frac{1}{C} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { no cycle }] / \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

$$
\begin{aligned}
& \mathrm{E}[\text { number of steps } \mid \text { phase successful }] \\
& \quad=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{Pr}[& \text { search at least } t \text { steps } \mid \text { successful }] \\
& =\operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { successful }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { successful }] / \operatorname{Pr}[\text { no cycle }] \\
& \leq \frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \wedge \text { no cycle }] / \operatorname{Pr}[\text { no cycle }] \\
& =\frac{1}{c} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }] .
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps \| phase successful]

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }]
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3}
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}=\mathcal{O}(1) .
\end{aligned}
$$

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps } \mid \text { no cycle }] \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}=\mathcal{O}(1) .
\end{aligned}
$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

Cuckoo Hashing

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

The expected number of unsuccessful rehashes is

$$
\sum_{i \geq 1} p^{i}=\frac{1}{1-p}-1=\frac{p}{1-p}=\mathcal{O}(p) .
$$

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / \mathrm{m}^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

The expected number of unsuccessful rehashes is

$$
\sum_{i \geq 1} p^{i}=\frac{1}{1-p}-1=\frac{p}{1-p}=\mathcal{O}(p) .
$$

Therefore the expected cost for re-hashes is
$\mathcal{O}(m) \cdot \mathcal{O}(p)=\mathcal{O}(1)$.

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i}
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let $X_{i}^{S}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\mathrm{E}\left[X_{i}^{s}\right]
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p .
$$

- Let Z_{i} denote the event that the i-th rehash occurs:

The 0-th (re)hash is the initial
configuration when doing the
insert.

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i}
$$

Let $X_{i}^{S}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\begin{aligned}
\mathrm{E}\left[X_{i}^{s}\right]= & \mathrm{E}[\text { steps } \mid \text { phase successful }] \cdot \operatorname{Pr}[\text { phase sucessful }] \\
& + \text { maxsteps } \cdot \operatorname{Pr}[\text { not sucessful }]
\end{aligned}
$$

Formal Proof

Let Y_{i} denote the event that the i-th rehash does not lead to a valid configuration (assuming i-th rehash occurs) (i.e., one of the $m+1$ insertions fails):

$$
\operatorname{Pr}\left[Y_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p .
$$

Let Z_{i} denote the event that the i-th rehash occurs:

The 0-th (re)hash is the initial
configuration when doing the
insert.

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \operatorname{Pr}\left[\wedge_{j=0}^{i-1} Y_{j}\right] \leq p^{i}
$$

Let $X_{i}^{S}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\begin{aligned}
\mathrm{E}\left[X_{i}^{s}\right]= & \mathrm{E}[\text { steps } \mid \text { phase successful }] \cdot \operatorname{Pr}[\text { phase sucessful }] \\
& + \text { maxsteps } \cdot \operatorname{Pr}[\text { not sucessful }]=\mathcal{O}(1) .
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right]=\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right]
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i}
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i} \\
& \leq \mathcal{O}(m) \cdot \frac{p}{1-p}
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $\left.X_{j}^{s}, j<i\right)$. Hence,

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i} \\
& \leq \mathcal{O}(m) \cdot \frac{p}{1-p} \\
& =\mathcal{O}(1)
\end{aligned}
$$

Cuckoo Hashing

What kind of hash-functions do we need?

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just $\Theta(\log m)$ different keys.
Therefore, it is sufficient to have $(\mu, \Theta(\log m))$-independent hash-functions.

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\alpha n / 2$. In order for a table-expand to occur at least $\alpha n / 2$ insertions are required. Similar, for a table-shrink at least $\alpha n / 4$ deletions must occur.

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\alpha n / 2$. In order for a table-expand to occur at least $\alpha n / 2$ insertions are required. Similar, for a table-shrink at least $\alpha n / 4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Cuckoo Hashing

Lemma 33
Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Cuckoo Hashing

Lemma 33

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.

The $1 /(2(1+\epsilon))$ fill-factor comes from the fact that the total hash-table ' is of size $2 n$ (because we have two tables of size n); moreover $m \leq i$ ' $(1+\epsilon) n$.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

- S. merge $\left(S^{\prime}\right): S:=S \cup S^{\prime} ; S^{\prime}:=\emptyset$.

8 Priority Queues

An addressable Priority Queue also supports:

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert (x) : Adds element x to the data-structure, and returns a handle to the object for future reference.

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. $\operatorname{insert}(x)$: Adds element x to the data-structure, and returns a handle to the object for future reference.
- S. delete(h): Deletes element specified through handle h.

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert (x) : Adds element x to the data-structure, and returns a handle to the object for future reference.
- S. delete(h): Deletes element specified through handle h.
- S. decrease-key $(\boldsymbol{h}, \boldsymbol{k})$: Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

Dijkstra's Shortest Path Algorithm

```
Algorithm 14 Shortest-Path \((G=(V, E, d), s \in V)\)
    1: Input: weighted graph \(G=(V, E, d)\); start vertex \(s\);
    2: Output: key-field of every node contains distance from \(s\);
    3: S.build(); // build empty priority queue
    4: for all \(v \in V \backslash\{s\}\) do
    5: \(\quad v\). key \(\leftarrow \infty\);
    6: \(\quad h_{v} \leftarrow S\).insert \((v)\);
    7: \(s\). key \(\leftarrow 0 ; S\).insert \((s)\);
    8: while \(S\).is-empty() = false do
    9: \(\quad v \leftarrow S\).delete-min();
10: \(\quad\) for all \(x \in V\) s.t. \((v, x) \in E\) do
        if \(x\). key \(>v\). key \(+d(v, x)\) then
        \(S\). decrease-key \(\left(h_{x}, v . \operatorname{key}+d(v, x)\right)\);
    \(x\). key \(\leftarrow v\). key \(+d(v, x)\);
```


Prim's Minimum Spanning Tree Algorithm

```
Algorithm 15 Prim-MST \((G=(V, E, d), s \in V)\)
    1: Input: weighted graph \(G=(V, E, d)\); start vertex \(s\);
    2: Output: pred-fields encode MST;
    3: \(S\).build(); // build empty priority queue
    4: for all \(v \in V \backslash\{s\}\) do
    5: \(\quad v\). key \(\leftarrow \infty\);
    6: \(\quad h_{v} \leftarrow S\).insert \((v)\);
    \(s\). key \(\leftarrow 0 ; S\).insert \((s)\);
    while \(S\).is-empty () = false do
    \(v \leftarrow S\).delete-min();
    for all \(x \in V\) s.t. \(\{v, x\} \in E\) do
    if \(x\). key \(>d(v, x)\) then
        \(S . \operatorname{decrease-key}\left(h_{x}, d(v, x)\right)\);
        \(x\). key \(\leftarrow d(v, x)\);
        \(x\). pred \(\leftarrow v\);
```


Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- $|V|$ insert() operations
- $|V|$ delete-min() operations
- $|V|$ is-empty() operations
- $|E|$ decrease-key() operations

Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- $|V|$ insert() operations
- $|V|$ delete-min() operations
- $|V|$ is-empty() operations
- $|E|$ decrease-key() operations

How good a running time can we obtain?

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V|+|E|) \log |V|)$.

Using Fibonacci Heaps, Prim and Dijkstra run in time $\mathcal{O}(|V| \log |V|+|E|)$.

8.1 Binary Heaps

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.

Binary Heaps

Operations:

Binary Heaps

Operations:

- minimum(): return the root-element. Time $\mathcal{O}(1)$.

Binary Heaps

Operations:

- minimum (): return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x
(last element when x is deleted) in time $\mathcal{O}(\log n)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x
(last element when x is deleted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a right edge. go left; go right until you reach a leaf

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x
(last element when x is deleted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a right edge. go left; go right until you reach a leaf
if you hit the root on the way up, go to the rightmost element

8.1 Binary Heaps

Maintain a pointer to the last element x.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x
(last element when an element is inserted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

Insert

1. Insert element at successor of x.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

At its new position e may either travel up or down in the tree (but not both directions).

Binary Heaps

Operations:

- minimum (): return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert (k) : insert at successor of x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

Build Heap

We can build a heap in linear time:

$$
\sum_{\text {levels } \ell} 2^{\ell} \cdot(h-\ell)=\sum_{i} i 2^{h-i}=\mathcal{O}\left(2^{h}\right)=\mathcal{O}(n)
$$

Binary Heaps

Operations:

- minimum(): Return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert (k) : Insert at x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): Swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.
- build $\left(x_{1}, \ldots, x_{n}\right)$: Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

Binary Heaps

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

8.2 Binomial Heaps

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Binomial Trees

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.
- Deleting the root of B_{k} gives trees $B_{0}, B_{1}, \ldots, B_{k-1}$.

Binomial Trees

Deleting the root of B_{5} leaves sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

Binomial Trees

Deleting the leaf furthest from the root (in B_{5}) leaves a path that connects the roots of sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

Binomial Trees

The number of nodes on level ℓ in tree B_{k} is therefore

$$
\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}
$$

Binomial Trees

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label $b_{n}, \ldots, b_{1}, b_{0}$ is obtained by setting the least significant 1 -bit to 0 .

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label $b_{n}, \ldots, b_{1}, b_{0}$ is obtained by setting the least significant 1 -bit to 0 .

The ℓ-th level contains nodes that have $\ell 1$'s in their label.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left $=x$. right $=x$).

8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

Binomial Heap

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_{0}, B_{1}, and B_{4}.

Binomial Heap: Merge

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_{i} 2^{k_{i}}$ must hold. But since the k_{i} are all distinct this means that the k_{i} define the non-zero bit-positions in the binary representation of n.

Binomial Heap

Properties of a heap with n keys:

Binomial Heap

Properties of a heap with n keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous
 to binary addition.

8.2 Binomial Heaps

S_{1}. merge $\left(S_{2}\right)$:

- Analogous to binary addition.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge $\left(S^{\prime}\right)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x) :

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete-min():

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees $).$

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees $).$
- Compute S.merge $\left(S^{\prime}\right)$.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\min }$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees $).$
- Compute S.merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. decrease-key(handle h):

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete(handle h):

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.

8.2 Binomial Heaps

S. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.
- Execute S. delete-min().

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.
- Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.
Structure is much more relaxed than binomial heaps.

8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x. marked that specifies whether x is marked or not.

8.3 Fibonacci Heaps

The potential function:

- $t(S)$ denotes the number of trees in the heap.
- $m(S)$ denotes the number of marked nodes.
- We use the potential function $\Phi(S)=t(S)+2 m(S)$.

The potential is $\Phi(S)=5+2 \cdot 3=11$.

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use \boldsymbol{c} to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps

S. minimum ()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.

8.3 Fibonacci Heaps

S. merge (S^{\prime})

- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Hence, amortized cost is $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. insert (x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

8.3 Fibonacci Heaps

S. insert (x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

8.3 Fibonacci Heaps

S. insert (x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

Running time:

- Actual cost $\mathcal{O}(1)$.
- Change in potential is +1 .
- Amortized cost is $c+\mathcal{O}(1)=\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

8.3 Fibonacci Heaps

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

- Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

8.3 Fibonacci Heaps

Consolidate:

$$
\begin{array}{|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\
\hline \circ & \circ & \circ & \circ \\
\hline
\end{array}
$$

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is
$c_{1} \cdot\left(D_{n}+t\right)-c \cdot\left(t-D_{n}-1\right)$

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is

$$
\begin{aligned}
c_{1} \cdot\left(D_{n}\right. & +t)-c \cdot\left(t-D_{n}-1\right) \\
& \leq\left(c_{1}+c\right) D_{n}+\left(c_{1}-c\right) t+c
\end{aligned}
$$

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is

$$
\begin{aligned}
c_{1} \cdot\left(D_{n}\right. & +t)-c \cdot\left(t-D_{n}-1\right) \\
& \leq\left(c_{1}+c\right) D_{n}+\left(c_{1}-c\right) t+c \leq 2 c\left(D_{n}+1\right)
\end{aligned}
$$

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is

$$
\begin{aligned}
& c_{1} \cdot\left(D_{n}+t\right)-c \cdot\left(t-D_{n}-1\right) \\
& \quad \leq\left(c_{1}+c\right) D_{n}+\left(c_{1}-c\right) t+c \leq 2 c\left(D_{n}+1\right) \leq \mathcal{O}\left(D_{n}\right)
\end{aligned}
$$

8.3 Fibonacci Heaps

Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is

$$
\begin{aligned}
& c_{1} \cdot\left(D_{n}+t\right)-c \cdot\left(t-D_{n}-1\right) \\
& \quad \leq\left(c_{1}+c\right) D_{n}+\left(c_{1}-c\right) t+c \leq 2 c\left(D_{n}+1\right) \leq \mathcal{O}\left(D_{n}\right)
\end{aligned}
$$

for $c \geq c_{1}$.

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_{n} \leq \log n$.

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

- Just decrease the key-value of element referenced by h. Nothing else to do.

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

- Just decrease the key-value of element referenced by h. Nothing else to do.

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

- Just decrease the key-value of element referenced by h. Nothing else to do.

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

- Just decrease the key-value of element referenced by h. Nothing else to do.

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:
$p \leftarrow \operatorname{parent}[x]$;
while (p is marked)
$p p \leftarrow \operatorname{parent}[p] ;$
cut of p; make it into a root; unmark it; $p \leftarrow p p ;$
if p is unmarked and not a root mark it;

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$
- Amortized cost is at most

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$
- Amortized cost is at most

$$
c_{2}(\ell+1)+c(4-\ell)
$$

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$
- Amortized cost is at most

$$
c_{2}(\ell+1)+c(4-\ell) \leq\left(c_{2}-c\right) \ell+4 c+c_{2}
$$

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$
- Amortized cost is at most

$$
\begin{aligned}
& c_{2}(\ell+1)+c(4-\ell) \leq\left(c_{2}-c\right) \ell+4 c+c_{2}=\mathcal{O}(1), \\
& \text { if } c \geq c_{2} .
\end{aligned}
$$

Delete node

H. delete (x) :

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}\left(\boldsymbol{D}_{\boldsymbol{n}}\right)$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}\left(D_{n}\right)$ for delete-min.

8.3 Fibonacci Heaps

Lemma 34

Let x be a node with degree k and let y_{1}, \ldots, y_{k} denote the children of x in the order that they were linked to x. Then

$$
\text { degree }\left(y_{i}\right) \geq \begin{cases}0 & \text { if } i=1 \\ i-2 & \text { if } i>1\end{cases}
$$

8.3 Fibonacci Heaps

Proof

- When y_{i} was linked to x, at least y_{1}, \ldots, y_{i-1} were already linked to x.

8.3 Fibonacci Heaps

Proof

- When y_{i} was linked to x, at least y_{1}, \ldots, y_{i-1} were already linked to x.
- Hence, at this time degree $(x) \geq i-1$, and therefore also degree $\left(y_{i}\right) \geq i-1$ as the algorithm links nodes of equal degree only.

8.3 Fibonacci Heaps

Proof

- When y_{i} was linked to x, at least y_{1}, \ldots, y_{i-1} were already linked to x.
- Hence, at this time degree $(x) \geq i-1$, and therefore also degree $\left(y_{i}\right) \geq i-1$ as the algorithm links nodes of equal degree only.
- Since, then y_{i} has lost at most one child.

8.3 Fibonacci Heaps

Proof

- When y_{i} was linked to x, at least y_{1}, \ldots, y_{i-1} were already linked to x.
- Hence, at this time degree $(x) \geq i-1$, and therefore also degree $\left(y_{i}\right) \geq i-1$ as the algorithm links nodes of equal degree only.
- Since, then y_{i} has lost at most one child.
- Therefore, degree $\left(y_{i}\right) \geq i-2$.

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k
- $s_{0}=1$ and $s_{1}=2$.

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k
- $s_{0}=1$ and $s_{1}=2$.

Let x be a degree k node of size s_{k} and let y_{1}, \ldots, y_{k} be its children.

$$
s_{k}=2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right)
$$

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k
- $s_{0}=1$ and $s_{1}=2$.

Let x be a degree k node of size s_{k} and let y_{1}, \ldots, y_{k} be its children.

$$
\begin{aligned}
s_{k} & =2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right) \\
& \geq 2+\sum_{i=2}^{k} s_{i-2}
\end{aligned}
$$

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k
- $s_{0}=1$ and $s_{1}=2$.

Let x be a degree k node of size s_{k} and let y_{1}, \ldots, y_{k} be its children.

$$
\begin{aligned}
s_{k} & =2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right) \\
& \geq 2+\sum_{i=2}^{k} s_{i-2} \\
& =2+\sum_{i=0}^{k-2} s_{i}
\end{aligned}
$$

8.3 Fibonacci Heaps

Definition 35
Consider the following non-standard Fibonacci type sequence:

$$
F_{k}= \begin{cases}1 & \text { if } k=0 \\ 2 & \text { if } k=1 \\ F_{k-1}+F_{k-2} & \text { if } k \geq 2\end{cases}
$$

Facts:

1. $F_{k} \geq \phi^{k}$.
2. For $k \geq 2$: $F_{k}=2+\sum_{i=0}^{k-2} F_{i}$.

The above facts can be easily proved by induction. From this it follows that $s_{k} \geq F_{k} \geq \phi^{k}$, which gives that the maximum degree in a Fibonacci heap is logarithmic.
$\mathrm{k}=0: \quad 1=F_{0} \geq \Phi^{0}=1$
$\mathrm{k}=1: \quad 2=F_{1} \geq \Phi^{1} \approx 1.61$
$+\Phi^{k-2}=\Phi^{k-2} \overbrace{(\Phi+1)}^{\Phi^{2}}=\Phi^{k}$
$\mathrm{k}=2$:

$$
3=F_{2}=2+1=2+F_{0}
$$

$\mathrm{k}-1 \rightarrow \mathrm{k}$:
$F_{k}=F_{k-1}+F_{k-2}=2+\sum_{i=0}^{k-3} F_{i}+F_{k-2}=2+\sum_{i=0}^{k-2} F_{i}$

9 Union Find

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

9 Union Find

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset (\boldsymbol{x}) : Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.

9 Union Find

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset (\boldsymbol{x}) : Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- \boldsymbol{P}. find (\boldsymbol{x}) : Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.

9 Union Find

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset (\boldsymbol{x}) : Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- \mathcal{P}. find (\boldsymbol{x}) : Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- \boldsymbol{P}. union $(\boldsymbol{x}, \boldsymbol{y})$: Given two elements x, and y that are currently in sets S_{x} and S_{y}, respectively, the function replaces S_{x} and S_{y} by $S_{x} \cup S_{y}$ and returns an identifier for the new set.

9 Union Find

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.

9 Union Find

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

9 Union Find

```
Algorithm 16 Kruskal-MST \((G=(V, E), w)\)
    1: \(A \leftarrow \emptyset\);
2: for all \(v \in V\) do
    3: \(\quad v\). set \(\leftarrow \mathcal{P}\). makeset \((v\). label)
    4: sort edges in non-decreasing order of weight \(w\)
    5: for all \((u, v) \in E\) in non-decreasing order do
    6: if \(\mathcal{P}\). find \((u\). set \() \neq \mathcal{P}\). find \((v\). set \()\) then
    7: \(\quad A \leftarrow A \cup\{(u, v)\}\)
    8: \(\quad \mathcal{P}\).union \((u\).set, \(v\).set)
```


List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.

List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

- makeset (x) can be performed in constant time.

List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

- makeset (x) can be performed in constant time.
- find (x) can be performed in constant time.

List Implementation

union (x, y)

- Determine sets S_{x} and S_{y}.

List Implementation

union (x, y)

- Determine sets S_{x} and S_{y}.
- Traverse the smaller list (say S_{y}), and change all backward pointers to the head of list S_{x}.

List Implementation

union (x, y)

- Determine sets S_{x} and S_{y}.
- Traverse the smaller list (say S_{y}), and change all backward pointers to the head of list S_{x}.
- Insert list S_{y} at the head of S_{x}.

List Implementation

union (x, y)

- Determine sets S_{x} and S_{y}.
- Traverse the smaller list (say S_{y}), and change all backward pointers to the head of list S_{x}.
- Insert list S_{y} at the head of S_{x}.
- Adjust the size-field of list S_{x}.

List Implementation

union (x, y)

- Determine sets S_{x} and S_{y}.
- Traverse the smaller list (say S_{y}), and change all backward pointers to the head of list S_{x}.
- Insert list S_{y} at the head of S_{x}.
- Adjust the size-field of list S_{x}.
- Time: $\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}$.

List Implementation

List Implementation

List Implementation

List Implementation

List Implementation

Running times:

- find (x) : constant
- makeset (x) : constant
- union $(x, y): \mathcal{O}(n)$, where n denotes the number of elements contained in the set system.

List Implementation

Lemma 36

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find $(x): \mathcal{O}(1)$.
- makeset $(x): \mathcal{O}(\log n)$.
- union $(x, y): \mathcal{O}(1)$.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.

The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.

List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

List Implementation

makeset (\boldsymbol{x}) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

List Implementation

makeset (\boldsymbol{x}) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find (x) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

List Implementation

makeset (\boldsymbol{x}) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find (x) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union (x, y) :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.

List Implementation

makeset (\boldsymbol{x}) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find (x) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union (x, y) :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$.

List Implementation

makeset (\boldsymbol{x}) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find (x) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union (x, y) :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$.
- Assume wlog. that S_{x} is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot\left|S_{\chi}\right|$.

List Implementation

makeset (\boldsymbol{x}) : The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.
find (x) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.
union (x, y) :

- If $S_{x}=S_{y}$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)$.
- Assume wlog. that S_{x} is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot\left|S_{x}\right|$.
- Charge c to every element in set S_{x}.

List Implementation

Lemma 37
An element is charged at most $\left\lfloor\log _{2} n\right\rfloor$ times, where n is the total number of elements in the set system.

List Implementation

Lemma 37

An element is charged at most $\left\lfloor\log _{2} n\right\rfloor$ times, where n is the total number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in x 's set doubles. This can happen at most $\lfloor\log n\rfloor$ times.

Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.

Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:

Set system $\{2,5,10,12\},\{3,6,7,8,9,14,17\},\{16,19,23\}$.

Implementation via Trees

makeset (x)

- Create a singleton tree. Return pointer to the root.

Implementation via Trees

makeset (x)

- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.

Implementation via Trees

makeset (\boldsymbol{x})

- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.
find (x)
- Start at element x in the tree. Go upwards until you reach the root.

Implementation via Trees

makeset (x)

- Create a singleton tree. Return pointer to the root.
- Time: $\mathcal{O}(1)$.

find (x)

- Start at element x in the tree. Go upwards until you reach the root.
- Time: $\mathcal{O}(\operatorname{level}(x))$, where level (x) is the distance of element x to the root in its tree. Not constant.

Implementation via Trees

To support union we store the size of a tree in its root.

Implementation via Trees

To support union we store the size of a tree in its root.
union (x, y)

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.

Implementation via Trees

To support union we store the size of a tree in its root.
union (x, y)

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.

Implementation via Trees

To support union we store the size of a tree in its root.
union (x, y)

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

Implementation via Trees

To support union we store the size of a tree in its root.
union (x, y)

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

Implementation via Trees

To support union we store the size of a tree in its root.
union (x, y)

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

Implementation via Trees

To support union we store the size of a tree in its root.
union (x, y)

- Perform $a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- $\operatorname{link}(a, b)$ attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

- Time: constant for $\operatorname{link}(a, b)$ plus two find-operations.

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size(p) may still increase.

Implementation via Trees

Lemma 38

The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size(p) may still increase.
- Hence, at any point in time a tree fulfills $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, for any pair of nodes (p, c), where p is a parent of c.

Implementation via Trees

Lemma 38

The running time (non-amortized!!!) for $\operatorname{find}(x)$ is $\mathcal{O}(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size(p) may still increase.
- Hence, at any point in time a tree fulfills $\operatorname{size}(p) \geq 2 \operatorname{size}(c)$, for any pair of nodes (p, c), where p is a parent of c.

Path Compression

find (x) :

- Go upward until you find the root.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Path Compression

find (x) :

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

- Note that the size-fields now only give an upper bound on the size of a sub-tree.

Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Amortized Analysis

Definitions:

Amortized Analysis

Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v 's subtree in the case that there are no find-operations.

Amortized Analysis

Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v 's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor$.

Amortized Analysis

Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v 's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor$.
- $\Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}$.

Amortized Analysis

Definitions:

- $\operatorname{size}(v):=$ the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v 's subtree in the case that there are no find-operations.

- $\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor$.
- $\Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}$.

Lemma 39

The rank of a parent must be strictly larger than the rank of a child.

Amortized Analysis

Lemma 40
There are at most $n / 2^{s}$ nodes of ranks.

Amortized Analysis

Lemma 40

There are at most $n / 2^{s}$ nodes of ranks.

Proof.

- Let's say a node v sees node x if v is in x 's sub-tree at the time that x becomes a child.

Amortized Analysis

Lemma 40

There are at most $n / 2^{s}$ nodes of ranks.

Proof.

- Let's say a node v sees node x if v is in x 's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.

Amortized Analysis

Lemma 40

There are at most $n / 2^{s}$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x 's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.

Amortized Analysis

Lemma 40

There are at most $n / 2^{s}$ nodes of ranks.

Proof.

- Let's say a node v sees node x if v is in x 's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2^{s} different nodes.

Amortized Analysis

We define

$$
\operatorname{tow}(i):= \begin{cases}1 & \text { if } i=0 \\ 2^{\operatorname{tow}(i-1)} & \text { otw. }\end{cases}
$$

Amortized Analysis

We define

$$
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
$$

Amortized Analysis

We define

$$
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
$$

and

$$
\log ^{*}(n):=\min \{i \mid \operatorname{tow}(i) \geq n\}
$$

Amortized Analysis

We define

$$
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
$$

and

$$
\log ^{*}(n):=\min \{i \mid \operatorname{tow}(i) \geq n\}
$$

Theorem 41
Union find with path compression fulfills the following amortized running times:

- makeset $(x): \mathcal{O}\left(\log ^{*}(n)\right)$
- $\operatorname{find}(x): \mathcal{O}\left(\log ^{*}(n)\right)$
- union $(x, y): \mathcal{O}\left(\log ^{*}(n)\right)$

Amortized Analysis

In the following we assume $n \geq 2$.

Amortized Analysis

In the following we assume $n \geq 2$.
rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.

Amortized Analysis

In the following we assume $n \geq 2$.
rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.

Amortized Analysis

In the following we assume $n \geq 2$.
rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)$.

Amortized Analysis

In the following we assume $n \geq 2$.

rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)$.
- The maximum non-empty rank group is $\log ^{*}(\lfloor\log n\rfloor) \leq \log ^{*}(n)-1$ (which holds for $n \geq 2$).

Amortized Analysis

In the following we assume $n \geq 2$.

rank-group:

- A node with rank $\operatorname{rank}(v)$ is in rank group $\log ^{*}(\operatorname{rank}(v))$.
- The rank-group $g=0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)$.
- The maximum non-empty rank group is $\log ^{*}(\lfloor\log n\rfloor) \leq \log ^{*}(n)-1$ (which holds for $n \geq 2$).
- Hence, the total number of rank-groups is at most $\log ^{*} n$.

Amortized Analysis

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent $[v]$ as follows:

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent $[v]$ as follows:

- If parent $[v]$ is the root we charge the cost to the find-account.

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent $[v]$ as follows:

- If parent $[v]$ is the root we charge the cost to the find-account.
- If the group-number of $\operatorname{rank}(v)$ is the same as that of rank(parent[$v]$) (before starting path compression) we charge the cost to the node-account of v.

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent $[v]$ as follows:

- If parent $[v]$ is the root we charge the cost to the find-account.
- If the group-number of $\operatorname{rank}(v)$ is the same as that of rank(parent[$v]$) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Amortized Analysis

Observations:

Amortized Analysis

Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).

Amortized Analysis

Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.

Amortized Analysis

Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.

Amortized Analysis

Observations:

- A find-account is charged at most $\log ^{*}(n)$ times (once for the root and at most $\log ^{*}(n)-1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- The total charge made to a node in rank-group g is at most $\operatorname{tow}(g)-\operatorname{tow}(g-1)-1 \leq \operatorname{tow}(g)$.

Amortized Analysis

What is the total charge made to nodes?

Amortized Analysis

What is the total charge made to nodes?

- The total charge is at most

$$
\sum_{g} n(g) \cdot \operatorname{tow}(g)
$$

where $n(g)$ is the number of nodes in group g.

Amortized Analysis

For $g \geq 1$ we have

$$
n(g)
$$

Amortized Analysis

For $g \geq 1$ we have

$$
n(g) \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}}
$$

Amortized Analysis

For $g \geq 1$ we have

$$
n(g) \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}}
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}
\end{aligned}
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2
\end{aligned}
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}
\end{aligned}
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
$$

Hence,

$$
\sum_{g} n(g) \operatorname{tow}(g)
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
$$

Hence,

$$
\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \text { tow }(0)+\sum_{g \geq 1} n(g) \text { tow }(g)
$$

Amortized Analysis

For $g \geq 1$ we have

$$
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)} .
\end{aligned}
$$

Hence,

$$
\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \operatorname{tow}(0)+\sum_{g \geq 1} n(g) \operatorname{tow}(g) \leq n \log ^{*}(n)
$$

Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log ^{*} n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

Amortized Analysis

Amortized Analysis

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log ^{*} n$. (Here, we consider the average running time of m operations on at most n elements).

Amortized Analysis

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log ^{*} n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

Amortized Analysis

$$
\begin{gathered}
A(x, y)= \begin{cases}y+1 & \text { if } x=0 \\
A(x-1,1) & \text { if } y=0 \\
A(x-1, A(x, y-1)) & \text { otw. }\end{cases} \\
\alpha(m, n)=\min \{i \geq 1: A(i,\lfloor m / n\rfloor) \geq \log n\}
\end{gathered}
$$

Amortized Analysis

$$
\begin{gathered}
A(x, y)= \begin{cases}y+1 & \text { if } x=0 \\
A(x-1,1) & \text { if } y=0 \\
A(x-1, A(x, y-1)) & \text { otw. }\end{cases} \\
\alpha(m, n)=\min \{i \geq 1: A(i,\lfloor m / n\rfloor) \geq \log n\}
\end{gathered}
$$

- $A(0, y)=y+1$
- $A(1, y)=y+2$
- $A(2, y)=2 y+3$
- $A(3, y)=2^{y+3}-3$
- $A(4, y)=\underbrace{2^{2^{2^{2}}}}_{y+3 \text { times }}-3$

Part IV

Flows and Cuts

The following slides are partially based on slides by Kevin Wayne.

10 Introduction

Flow Network

- directed graph $G=(V, E)$; edge capacities $c(e)$

10 Introduction

Flow Network

- directed graph $G=(V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t;

10 Introduction

Flow Network

- directed graph $G=(V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t;
- no edges entering s or leaving t;

10 Introduction

Flow Network

- directed graph $G=(V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;

Cuts

Definition 42

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \backslash A$.

Cuts

Definition 42

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \backslash A$.

Definition 43
The capacity of a cut A is defined as

$$
\operatorname{cap}(A, V \backslash A):=\sum_{e \in \operatorname{out}(A)} c(e),
$$

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \backslash A$ (i.e. edges leaving A).

Cuts

Definition 42
An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \backslash A$.

Definition 43
The capacity of a cut A is defined as

$$
\operatorname{cap}(A, V \backslash A):=\sum_{e \in \operatorname{out}(A)} c(e),
$$

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \backslash A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

Cuts

Example 44

The capacity of the cut is $\operatorname{cap}(A, V \backslash A)=28$.

Flows

Definition 45

An (s, t)-flow is a function $f: E \mapsto \mathbb{R}^{+}$that satisfies

1. For each edge e

$$
0 \leq f(e) \leq c(e) .
$$

(capacity constraints)

Flows

Definition 45

An (s, t)-flow is a function $f: E \mapsto \mathbb{R}^{+}$that satisfies

1. For each edge e

$$
0 \leq f(e) \leq c(e)
$$

(capacity constraints)
2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{e \in \operatorname{out}(v)} f(e)=\sum_{e \in \operatorname{into}(v)} f(e)
$$

(flow conservation constraints)

Flows

Definition 46

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(s)} f(e) .
$$

Flows

Definition 46

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(s)} f(e) .
$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

Flows

Example 47

The value of the flow is $\operatorname{val}(f)=24$.

Flows

Lemma 48 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s, t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) .
$$

Proof.

$$
\operatorname{val}(f)
$$

Proof.

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(s)} f(e)
$$

Proof.

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(s)} f(e) \\
& =\sum_{e \in \operatorname{out}(s)} f(e)+\sum_{v \in A \backslash\{s\}}\left(\sum_{e \in \operatorname{out}(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(s)} f(e) \\
& \left.=\sum_{e \in \operatorname{out}(s)} f(e)+\sum_{v \in A \backslash\{s} \sum_{e \in \operatorname{out}(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(s)} f(e) \\
& =\sum_{e \in \operatorname{out}(s)} f(e)+\sum_{v \in A \backslash\{s\}}\left(\sum_{e \in \operatorname{out}(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right) \\
& =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(s)} f(e) \\
& =\sum_{e \in \operatorname{out}(s)} f(e)+\sum_{v \in A \backslash\{s\}}\left(\sum_{e \in \operatorname{out}(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right) \\
& =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e)
\end{aligned}
$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

Example 49

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$
\operatorname{cap}(A, V \backslash A)<\operatorname{val}\left(f^{\prime}\right)
$$

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$
\begin{aligned}
\operatorname{cap}(A, V \backslash A) & <\operatorname{val}\left(f^{\prime}\right) \\
& =\sum_{e \in \operatorname{out}(A)} f^{\prime}(e)-\sum_{e \in \operatorname{into}(A)} f^{\prime}(e)
\end{aligned}
$$

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$
\begin{aligned}
\operatorname{cap}(A, V \backslash A) & <\operatorname{val}\left(f^{\prime}\right) \\
& =\sum_{e \in \operatorname{out}(A)} f^{\prime}(e)-\sum_{e \in \operatorname{into}(A)} f^{\prime}(e) \\
& \leq \sum_{e \in \operatorname{out}(A)} f^{\prime}(e)
\end{aligned}
$$

Corollary 50

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$
\begin{aligned}
\operatorname{cap}(A, V \backslash A) & <\operatorname{val}\left(f^{\prime}\right) \\
& =\sum_{e \in \operatorname{out}(A)} f^{\prime}(e)-\sum_{e \in \operatorname{into}(A)} f^{\prime}(e) \\
& \leq \sum_{e \in \operatorname{out}(A)} f^{\prime}(e) \\
& \leq \operatorname{cap}(A, V \backslash A)
\end{aligned}
$$

11 Augmenting Path Algorithms

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s-t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

11 Augmenting Path Algorithms

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s-t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

11 Augmenting Path Algorithms

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s-t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

11 Augmenting Path Algorithms

Greedy-algorithm:

- start with $f(e)=0$ everywhere
- find an s-t path with $f(e)<c(e)$ on every edge
- augment flow along the path
- repeat as long as possible

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

- Suppose the original graph has edges $e_{1}=(u, v)$, and $e_{2}=(v, u)$ between u and v.

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

- Suppose the original graph has edges $e_{1}=(u, v)$, and $e_{2}=(v, u)$ between u and v.
- G_{f} has edge e_{1}^{\prime} with capacity $\max \left\{0, c\left(e_{1}\right)-f\left(e_{1}\right)+f\left(e_{2}\right)\right\}$ and e_{2}^{\prime} with with capacity $\max \left\{0, c\left(e_{2}\right)-f\left(e_{2}\right)+f\left(e_{1}\right)\right\}$.

The Residual Graph

From the graph $G=(V, E, c)$ and the current flow f we construct an auxiliary graph $G_{f}=\left(V, E_{f}, c_{f}\right)$ (the residual graph):

- Suppose the original graph has edges $e_{1}=(u, v)$, and $e_{2}=(v, u)$ between u and v.
- G_{f} has edge e_{1}^{\prime} with capacity $\max \left\{0, c\left(e_{1}\right)-f\left(e_{1}\right)+f\left(e_{2}\right)\right\}$ and e_{2}^{\prime} with with capacity $\max \left\{0, c\left(e_{2}\right)-f\left(e_{2}\right)+f\left(e_{1}\right)\right\}$.

G

G_{f}

Augmenting Path Algorithm

Definition 51

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_{f} that contains only edges with non-zero capacity.

Augmenting Path Algorithm

Definition 51

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_{f} that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson $(G=(V, E, c))$
1: Initialize $f(e) \leftarrow 0$ for all edges.
2: while \exists augmenting path p in G_{f} do
3: \quad augment as much flow along p as possible.

Augmenting Path Algorithm

Augmenting Path Algorithm

Flow value $=0$

Augmenting Path Algorithm

Flow value $=8$

Augmenting Path Algorithm

Flow value $=8$

Augmenting Path Algorithm

Flow value $=8$

Augmenting Path Algorithm

Flow value $=18$

Augmenting Path Algorithm

Augmenting Path Algorithm

Augmenting Path Algorithm

Augmenting Path Algorithm

Flow value $=19$

Augmenting Path Algorithm

Flow value $=19$

Augmenting Path Algorithm

Augmenting Path Algorithm

Theorem 52

A flow f is a maximum flow iff there are no augmenting paths.

Augmenting Path Algorithm

Theorem 52

A flow f is a maximum flow iff there are no augmenting paths.
Theorem 53
The value of a maximum flow is equal to the value of a minimum cut.

Augmenting Path Algorithm

Theorem 52

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that $\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)$.

Augmenting Path Algorithm

Theorem 52

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that $\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)$.
2. Flow f is a maximum flow.

Augmenting Path Algorithm

Theorem 52

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that $\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)$.
2. Flow f is a maximum flow.
3. There is no augmenting path w.r.t. f.

Augmenting Path Algorithm

Augmenting Path Algorithm

1. $\Rightarrow 2$.

This we already showed.

Augmenting Path Algorithm

1. $\Rightarrow 2$.

This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow. Contradiction.

Augmenting Path Algorithm

$1 . \Rightarrow 2$.
This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow. Contradiction.
3. $\Rightarrow 1$.

- Let f be a flow with no augmenting paths.

Augmenting Path Algorithm

1. $\Rightarrow 2$.

This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow. Contradiction.
3. $\Rightarrow 1$.

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.

Augmenting Path Algorithm

1. $\Rightarrow 2$.

This we already showed.
2. $\Rightarrow 3$.

If there were an augmenting path, we could improve the flow. Contradiction.
3. $\Rightarrow 1$.

- Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

Augmenting Path Algorithm

$$
\operatorname{val}(f)
$$

Augmenting Path Algorithm

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e)
$$

Augmenting Path Algorithm

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e)
\end{aligned}
$$

Augmenting Path Algorithm

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e) \\
& =\operatorname{cap}(A, V \backslash A)
\end{aligned}
$$

Augmenting Path Algorithm

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e) \\
& =\operatorname{cap}(A, V \backslash A)
\end{aligned}
$$

This finishes the proof.
Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

Assumption:
All capacities are integers between 1 and C.

Analysis

Assumption:
All capacities are integers between 1 and C.
Invariant:
Every flow value $f(e)$ and every residual capacity $c_{f}(e)$ remains integral troughout the algorithm.

Lemma 54

The algorithm terminates in at most $\operatorname{val}\left(f^{*}\right) \leq n C$ iterations, where f^{*} denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(\mathrm{nmC})$.

Lemma 54

The algorithm terminates in at most $\operatorname{val}\left(f^{*}\right) \leq n C$ iterations, where f^{*} denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(\mathrm{nmC})$.

Theorem 55

If all capacities are integers, then there exists a maximum flow for which every flow value $f(e)$ is integral.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

11.1 The Generic Augmenting Path Algorithm

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

A Bad Input

Problem: The running time may not be polynomial.

Question:
Can we tweak the algorithm so that the running time is polynomial in the input length?

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

A Pathological Input

$$
\text { Let } r=\frac{1}{2}(\sqrt{5}-1) \text {. Then } r^{n+2}=r^{n}-r^{n+1} \text {. }
$$

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

A Pathological Input

$$
\text { Let } r=\frac{1}{2}(\sqrt{5}-1) \text {. Then } r^{n+2}=r^{n}-r^{n+1} \text {. }
$$

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

A Pathological Input

$$
\text { Let } r=\frac{1}{2}(\sqrt{5}-1) \text {. Then } r^{n+2}=r^{n}-r^{n+1} \text {. }
$$

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

A Pathological Input

$$
\text { Let } r=\frac{1}{2}(\sqrt{5}-1) \text {. Then } r^{n+2}=r^{n}-r^{n+1} \text {. }
$$

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

A Pathological Input

Let $r=\frac{1}{2}(\sqrt{5}-1)$. Then $r^{n+2}=r^{n}-r^{n+1}$.

Running time may be infinite!!!

How to choose augmenting paths?

How to choose augmenting paths?

- We need to find paths efficiently.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Overview: Shortest Augmenting Paths

Overview: Shortest Augmenting Paths

Lemma 56

The length of the shortest augmenting path never decreases.

Overview: Shortest Augmenting Paths

Lemma 56

The length of the shortest augmenting path never decreases.

Lemma 57

After at most $\mathcal{O}(m)$ augmentations, the length of the shortest augmenting path strictly increases.

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58
The shortest augmenting path algorithm performs at most
$\mathcal{O}(\mathrm{mn})$ augmentations. This gives a running time of $\mathcal{O}\left(m^{2} n\right)$.

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58
The shortest augmenting path algorithm performs at most $\mathcal{O}(m n)$ augmentations. This gives a running time of $\mathcal{O}\left(m^{2} n\right)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58
The shortest augmenting path algorithm performs at most $\mathcal{O}(m n)$ augmentations. This gives a running time of $\mathcal{O}\left(m^{2} n\right)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly $k<n$ edges.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_{f}.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_{f}.

Let L_{G} denote the subgraph of the residual graph G_{f} that contains only those edges (u, v) with $\ell(v)=\ell(u)+1$.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_{f}.

Let L_{G} denote the subgraph of the residual graph G_{f} that contains only those edges (u, v) with $\ell(v)=\ell(u)+1$.

A path P is a shortest $s-u$ path in G_{f} if it is a an $s-u$ path in L_{G}.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_{f}.

Let L_{G} denote the subgraph of the residual graph G_{f} that contains only those edges (u, v) with $\ell(v)=\ell(u)+1$.

A path P is a shortest $s-u$ path in G_{f} if it is a an $s-u$ path in L_{G}.

In the following we assume that the residual graph G_{f} does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.
These changes cannot decrease the distance between s and t.

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.
These changes cannot decrease the distance between s and t.

G_{f}
 L_{G}

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.
These changes cannot decrease the distance between s and t.

G_{f}
 L_{G}

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.
These changes cannot decrease the distance between s and t.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_{L} denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_{L} denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

An s - t path in G_{f} that uses edges not in E_{L} has length larger than k, even when considering edges added to G_{f} during the round.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_{L} denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

An s - t path in G_{f} that uses edges not in E_{L} has length larger than k, even when considering edges added to G_{f} during the round.

In each augmentation one edge is deleted from E_{L}.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_{L} denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

An s - t path in G_{f} that uses edges not in E_{L} has length larger than k, even when considering edges added to G_{f} during the round.

In each augmentation one edge is deleted from E_{L}.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_{L} denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

An s - t path in G_{f} that uses edges not in E_{L} has length larger than k, even when considering edges added to G_{f} during the round.

In each augmentation one edge is deleted from E_{L}.

Shortest Augmenting Paths

Shortest Augmenting Paths

Theorem 59

The shortest augmenting path algorithm performs at most $\mathcal{O}(\mathrm{mn})$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Shortest Augmenting Paths

Theorem 59

The shortest augmenting path algorithm performs at most $\mathcal{O}(\mathrm{mn})$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 60 (without proof)

There exist networks with $m=\Theta\left(n^{2}\right)$ that require $\mathcal{O}(m n)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Shortest Augmenting Paths

Theorem 59

The shortest augmenting path algorithm performs at most $\mathcal{O}(\mathrm{mn})$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 60 (without proof)

There exist networks with $m=\Theta\left(n^{2}\right)$ that require $\mathcal{O}(m n)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}\left(m n^{2}\right)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

Shortest Augmenting Paths

We maintain a subset E_{L} of the edges of G_{f} with the guarantee that a shortest $s-t$ path using only edges from E_{L} is a shortest augmenting path.

Shortest Augmenting Paths

We maintain a subset E_{L} of the edges of G_{f} with the guarantee that a shortest $s-t$ path using only edges from E_{L} is a shortest augmenting path.

With each augmentation some edges are deleted from E_{L}.

Shortest Augmenting Paths

We maintain a subset E_{L} of the edges of G_{f} with the guarantee that a shortest $s-t$ path using only edges from E_{L} is a shortest augmenting path.

With each augmentation some edges are deleted from E_{L}.
When E_{L} does not contain an s - t path anymore the distance between s and t strictly increases.

Shortest Augmenting Paths

We maintain a subset E_{L} of the edges of G_{f} with the guarantee that a shortest $s-t$ path using only edges from E_{L} is a shortest augmenting path.

With each augmentation some edges are deleted from E_{L}.
When E_{L} does not contain an s - t path anymore the distance between s and t strictly increases.

Note that E_{L} is not the set of edges of the level graph but a subset of level-graph edges.

Suppose that the initial distance between s and t in G_{f} is k.

Suppose that the initial distance between s and t in G_{f} is k.
E_{L} is initialized as the level graph L_{G}.

Suppose that the initial distance between s and t in G_{f} is k.
E_{L} is initialized as the level graph L_{G}.
Perform a DFS search to find a path from s to t using edges from E_{L}.

Suppose that the initial distance between s and t in G_{f} is k.
E_{L} is initialized as the level graph L_{G}.
Perform a DFS search to find a path from s to t using edges from E_{L}.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

Suppose that the initial distance between s and t in G_{f} is k.
E_{L} is initialized as the level graph L_{G}.
Perform a DFS search to find a path from s to t using edges from E_{L}.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_{L}.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_{L} for the phase takes time $\mathcal{O}(m)$.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_{L} for the phase takes time $\mathcal{O}(m)$.
The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(\mathrm{mn})$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_{L} and takes time $\mathcal{O}(n)$.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_{L} for the phase takes time $\mathcal{O}(m)$.
The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(\mathrm{mn})$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_{L} and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_{f} and has to check whether the edge is still in E_{L} for the next search.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_{L} for the phase takes time $\mathcal{O}(m)$.
The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(\mathrm{mn})$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_{L} and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_{f} and has to check whether the edge is still in E_{L} for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}\left(m n^{2}\right)$.

How to choose augmenting paths?

- We need to find paths efficiently.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Capacity Scaling

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_{f}(\Delta)$ is a sub-graph of the residual graph G_{f} that contains only edges with capacity at least Δ.

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_{f}(\Delta)$ is a sub-graph of the residual graph G_{f} that contains only edges with capacity at least Δ.

Capacity Scaling

```
Algorithm 2 maxflow ( \(G, s, t, c\) )
    1: foreach \(e \in E\) do \(f_{e} \leftarrow 0\);
2: \(\Delta \leftarrow 2^{\left\lceil\log _{2} C\right\rceil}\)
    3: while \(\Delta \geq 1\) do
    4: \(\quad G_{f}(\Delta) \leftarrow \Delta\)-residual graph
            while there is augmenting path \(P\) in \(G_{f}(\Delta)\) do
    6: \(\quad f \leftarrow \operatorname{augment}(f, c, P)\)
    7: \(\quad\) update \(\left(G_{f}(\Delta)\right)\)
    8: \(\quad \Delta \leftarrow \Delta / 2\)
    9: return \(f\)
```


Capacity Scaling

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.
Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.
Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

- because of integrality we have $G_{f}(1)=G_{f}$

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

- because of integrality we have $G_{f}(1)=G_{f}$
- therefore after the last phase there are no augmenting paths anymore

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

- because of integrality we have $G_{f}(1)=G_{f}$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Capacity Scaling

Capacity Scaling

Lemma 61
There are $\lceil\log C\rceil+1$ iterations over Δ.
Proof: obvious.

Capacity Scaling

Lemma 61
There are $\lceil\log C\rceil+1$ iterations over Δ.
Proof: obvious.

Lemma 62
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than val $(f)+m \Delta$.
Proof: less obvious, but simple:

Capacity Scaling

Lemma 61
There are $\lceil\log C\rceil+1$ iterations over Δ.
Proof: obvious.

Lemma 62

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\operatorname{val}(f)+m \Delta$.
Proof: less obvious, but simple:

- There must exist an s - t cut in $G_{f}(\Delta)$ of zero capacity.

Capacity Scaling

Lemma 61
There are $\lceil\log C\rceil+1$ iterations over Δ.
Proof: obvious.

Lemma 62

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than val $(f)+m \Delta$.
Proof: less obvious, but simple:

- There must exist an s-t cut in $G_{f}(\Delta)$ of zero capacity.
- In G_{f} this cut can have capacity at most $m \Delta$.

Capacity Scaling

Lemma 61
There are $\lceil\log C\rceil+1$ iterations over Δ.
Proof: obvious.

Lemma 62

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than val $(f)+m \Delta$.
Proof: less obvious, but simple:

- There must exist an $s-t$ cut in $G_{f}(\Delta)$ of zero capacity.
- In G_{f} this cut can have capacity at most $m \Delta$.
- This gives me an upper bound on the flow that I can still add.

Capacity Scaling

Capacity Scaling

Lemma 63

There are at most $2 m$ augmentations per scaling-phase.

Capacity Scaling

Lemma 63

There are at most $2 m$ augmentations per scaling-phase. Proof:

- Let f be the flow at the end of the previous phase.

Capacity Scaling

Lemma 63

There are at most $2 m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+2 m \Delta$

Capacity Scaling

Lemma 63

There are at most $2 m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+2 m \Delta$
- Each augmentation increases flow by Δ.

Capacity Scaling

Lemma 63

There are at most $2 m$ augmentations per scaling-phase.
Proof:

- Let f be the flow at the end of the previous phase.
- $\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+2 m \Delta$
- Each augmentation increases flow by Δ.

Theorem 64
We need $\mathcal{O}(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}\left(m^{2} \log C\right)$.

Matching

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- Input: undirected, bipartite graph $G=(L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

12.1 Matching

Bipartite Matching

- Input: undirected, bipartite graph $G=(L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Maxflow Formulation

- Input: undirected, bipartite graph $G=\left(L \uplus R \uplus\{s, t\}, E^{\prime}\right)$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

12.1 Matching

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G

G^{\prime}

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G

G^{\prime}

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G

G^{\prime}

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

12.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.
- Shortest augmenting path: $\mathcal{O}\left(m n^{2}\right)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m \sqrt{n})$.

Baseball Elimination

team	wins	losses	remaining games			
\boldsymbol{i}	$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{\ell}_{\boldsymbol{i}}$	Atl	Phi	$\boldsymbol{N} \boldsymbol{Y}$	Mon
Atlanta	83	71	-	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Baseball Elimination

Formal definition of the problem:

- Given a set S of teams, and one specific team $z \in S$.
- Team x has already won w_{x} games.
- Team x still has to play team $y, r_{x y}$ times.
- Does team z still have a chance to finish with the most number of wins.

Baseball Elimination

Flow network for $z=3$. M is number of wins Team 3 can still obtain.

Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
r(S \backslash\{z\})
$$

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
r(S \backslash\{z\})>\operatorname{cap}(A, V \backslash A)
$$

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right)
\end{aligned}
$$

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right) \\
& \geq r(S \backslash\{z\})-r(T)+|T| M-w(T)
\end{aligned}
$$

Theorem 65

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right) \\
& \geq r(S \backslash\{z\})-r(T)+|T| M-w(T)
\end{aligned}
$$

- This gives $M<(w(T)+r(T)) /|T|$, i.e., z is eliminated.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{x}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project Selection

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_{v} (can be positive or negative).

Project Selection

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_{v} (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).

Project Selection

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_{v} (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."

Project Selection

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_{v} (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

Project Selection

Project selection problem:

- Set P of possible projects. Project v has an associated profit p_{v} (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.

Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_{v} for nodes v with positive profit.
- Create edge (v, t) with capacity $-p_{v}$ for nodes v with negative profit.

Theorem 66
A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Theorem 66

A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.

Theorem 66

A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.
- $\operatorname{cap}(A, V \backslash A)$
For the formula we
define $p_{s}:=0$.
The step follows by
adding $\sum_{v \in A: p_{v}>0} p_{v}-$
$\sum_{v \in A: p_{v}>0} p_{v}=0$.

Note that minimizing ' the capacity of the cut ($A, V \backslash A$) corresponds to maximizing profits of projects in A.

Theorem 66

A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.
- $\operatorname{cap}(A, V \backslash A)=\sum p_{v}+\sum\left(-p_{v}\right)$

For the formula we define $p_{s}:=0$.

The step follows by adding $\sum_{v \in A: p_{v}>0} p_{v-}$ $\sum_{v \in A: p_{v}>0} p_{v}=0$.

Note that minimizing ' the capacity of the cut ($A, V \backslash A$) corresponds to maximizing profits of projects in A.

Theorem 66

A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.
- $\operatorname{cap}(A, V \backslash A)=\sum p_{v}+\sum\left(-p_{v}\right)$

For the formula we define $p_{s}:=0$.

The step follows by adding $\sum_{v \in A: p_{v}>0} p_{v-}$ $\sum_{v \in A: p_{v}>0} p_{v}=0$.

Note that minimizing ' the capacity of the cut ($A, V \backslash A$) corresponds to maximizing profits of projects in A.

Preflows

Preflows

Definition 67

An (s, t)-preflow is a function $f: E \mapsto \mathbb{R}^{+}$that satisfies

1. For each edge e

$$
0 \leq f(e) \leq c(e)
$$

(capacity constraints)

Preflows

Definition 67

An (s, t)-preflow is a function $f: E \mapsto \mathbb{R}^{+}$that satisfies

1. For each edge e

$$
0 \leq f(e) \leq c(e)
$$

(capacity constraints)

2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{e \in \operatorname{out}(v)} f(e) \leq \sum_{e \in \operatorname{into}(v)} f(e) .
$$

Preflows

Example 68

Preflows

Example 68

A node that has $\sum_{e \in \operatorname{out}(v)} f(e)<\sum_{e \in \operatorname{into}(v)} f(e)$ is called an active node.

Preflows

Preflows

Definition:

A labelling is a function $\ell: V \rightarrow \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v)+1$ for all edges (u, v) in the residual graph G_{f} (only non-zero capacity edges!!!)

Preflows

Definition:

A labelling is a function $\ell: V \rightarrow \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v)+1$ for all edges (u, v) in the residual graph G_{f} (only non-zero capacity edges!!!)
- $\ell(s)=n$

Preflows

Definition:

A labelling is a function $\ell: V \rightarrow \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v)+1$ for all edges (u, v) in the residual graph G_{f} (only non-zero capacity edges!!!)
- $\ell(s)=n$
- $\ell(t)=0$

Preflows

Definition:
A labelling is a function $\ell: V \rightarrow \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v)+1$ for all edges (u, v) in the residual graph
G_{f} (only non-zero capacity edges!!!)
- $\ell(s)=n$
- $\ell(t)=0$

Intuition:

The labelling can be viewed as a height function. Whenever the height from node u to node v decreases by more than 1 (i.e., it goes very steep downhill from u to v), the corresponding edge must be saturated.

Preflows

Preflows

Preflows

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Proof:

- There are n nodes but $n+1$ different labels from $0, \ldots, n$.

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Proof:

- There are n nodes but $n+1$ different labels from $0, \ldots, n$.
- There must exist a label $d \in\{0, \ldots, n\}$ such that none of the nodes carries this label.

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Proof:

- There are n nodes but $n+1$ different labels from $0, \ldots, n$.
- There must exist a label $d \in\{0, \ldots, n\}$ such that none of the nodes carries this label.
- Let $A=\{v \in V \mid \ell(v)>d\}$ and $B=\{v \in V \mid \ell(v)<d\}$.

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Proof:

- There are n nodes but $n+1$ different labels from $0, \ldots, n$.
- There must exist a label $d \in\{0, \ldots, n\}$ such that none of the nodes carries this label.
- Let $A=\{v \in V \mid \ell(v)>d\}$ and $B=\{v \in V \mid \ell(v)<d\}$.
- We have $s \in A$ and $t \in B$ and there is no edge from A to B in the residual graph G_{f}; this means that (A, B) is a saturated cut.

Preflows

Lemma 69

A preflow that has a valid labelling saturates a cut.

Proof:

- There are n nodes but $n+1$ different labels from $0, \ldots, n$.
- There must exist a label $d \in\{0, \ldots, n\}$ such that none of the nodes carries this label.
- Let $A=\{v \in V \mid \ell(v)>d\}$ and $B=\{v \in V \mid \ell(v)<d\}$.
- We have $s \in A$ and $t \in B$ and there is no edge from A to B in the residual graph G_{f}; this means that (A, B) is a saturated cut.

Lemma 70
A flow that has a valid labelling is a maximum flow.

Push Relabel Algorithms

Push Relabel Algorithms

Idea:

- start with some preflow and some valid labelling

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the ' property that it has a feasible flow. It successively changes this flow until it saturates some cut ! in which case we conclude that the flow is maximum. A preflow push algorithm maintains the property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation ' constraints in which case we can conclude that we have a maximum flow.

Push Relabel Algorithms

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
Note that this is somewhat dual to an augenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
i property that it has a saturated cut. The preflow is changed iteratively untio it fulfills conservation
ponstraints in which case we can conclude that we have a maximum flow.

Push Relabel Algorithms

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
- stop when you have a flow (i.e., no more active nodes)
Note that this is somewhat dual to an augenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
i property that it has a saturated cut. The preflow is changed iteratively untio it fulfills conservation
ponstraints in which case we can conclude that we have a maximum flow.

Changing a Preflow

Changing a Preflow

An arc (u, v) with $c_{f}(u, v)>0$ in the residual graph is admissible if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

Changing a Preflow

An arc (u, v) with $c_{f}(u, v)>0$ in the residual graph is admissible if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation
Consider an active node u with excess flow $f(u)=\sum_{e \in \operatorname{into}(u)} f(e)-\sum_{e \in \operatorname{out}(u)} f(e)$ and suppose $e=(u, v)$ is an admissible arc with residual capacity $c_{f}(e)$.

Changing a Preflow

An arc (u, v) with $c_{f}(u, v)>0$ in the residual graph is admissible if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation
Consider an active node u with excess flow $f(u)=\sum_{e \in \operatorname{into}(u)} f(e)-\sum_{e \in \operatorname{out}(u)} f(e)$ and suppose $e=(u, v)$ is an admissible arc with residual capacity $c_{f}(e)$.

We can send flow $\min \left\{c_{f}(e), f(u)\right\}$ along e and obtain a new preflow. The old labelling is still valid (!!!).

Changing a Preflow

An arc (u, v) with $c_{f}(u, v)>0$ in the residual graph is admissible if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation
Consider an active node u with excess flow $f(u)=\sum_{e \in \operatorname{into}(u)} f(e)-\sum_{e \in \operatorname{out}(u)} f(e)$ and suppose $e=(u, v)$ is an admissible arc with residual capacity $c_{f}(e)$.

We can send flow $\min \left\{c_{f}(e), f(u)\right\}$ along e and obtain a new preflow. The old labelling is still valid (!!!).

- saturating push: $\min \left\{f(u), c_{f}(e)\right\}=c_{f}(e)$ the arc e is deleted from the residual graph

Changing a Preflow

An arc (u, v) with $c_{f}(u, v)>0$ in the residual graph is admissible if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u)=\sum_{e \in \operatorname{into}(u)} f(e)-\sum_{e \in \operatorname{out}(u)} f(e)$ and suppose $e=(u, v)$ is an admissible arc with residual capacity $c_{f}(e)$.

We can send flow $\min \left\{c_{f}(e), f(u)\right\}$ along e and obtain a new preflow. The old labelling is still valid (!!!).

- saturating push: $\min \left\{f(u), c_{f}(e)\right\}=c_{f}(e)$ the arc e is deleted from the residual graph
- non-saturating push: $\min \left\{f(u), c_{f}(e)\right\}=f(u)$ the node u becomes inactive

Push Relabel Algorithms

Push Relabel Algorithms

The relabel operation
Consider an active node u that does not have an outgoing admissible arc.

Push Relabel Algorithms

The relabel operation
Consider an active node u that does not have an outgoing admissible arc.

Increasing the label of u by 1 results in a valid labelling.

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing admissible arc.

Increasing the label of u by 1 results in a valid labelling.

- Edges (w, u) incoming to u still fulfill their constraint $\ell(w) \leq \ell(u)+1$.

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing admissible arc.

Increasing the label of u by 1 results in a valid labelling.

- Edges (w, u) incoming to u still fulfill their constraint $\ell(w) \leq \ell(u)+1$.
- An outgoing edge (u, w) had $\ell(u)<\ell(w)+1$ before since it was not admissible. Now: $\ell(u) \leq \ell(w)+1$.

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a height/label of n and the target a height/label of 0 . If we see an active node u with an admissible arc we push the flow at u towards the other end-point that has a lower height/label. If we do not have an admissible arc but excess flow into u it should roughly mean that the level/height/label of u should rise. (If we consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are integral, i.e., they cannot really be seen as the height of a node.

Reminder

- In a preflow nodes may not fulfill conservation constraints; a node may have more incoming flow than outgoing flow.
- Such a node is called active.
- A labelling is valid if for every edge (u, v) in the residual graph $\ell(u) \leq \ell(v)+1$.
- An arc (u, v) in residual graph is admissible if $\ell(u)=\ell(v)+1$.
- A saturating push along e pushes an amount of $c(e)$ flow along the edge, thereby saturating the edge (and making it dissappear from the residual graph).
- A non-saturating push along $e=(u, v)$ pushes a flow of $f(u)$, where $f(u)$ is the excess flow of u. This makes u inactive.

Push Relabel Algorithms

```
Algorithm 3 maxflow(G,s,t,c)
    1: find initial preflow }
    2: while there is active node }u\mathrm{ do
    3: if there is admiss. arc e out of }u\mathrm{ then
    4: push(G,e,f,c)
    5: else
    6: relabel(u)
    7: return }
```


Push Relabel Algorithms

```
Algorithm 3 maxflow(G,s,t,c)
    1: find initial preflow }
    2: while there is active node }u\mathrm{ do
    3: if there is admiss. arc e out of }u\mathrm{ then
    4: push(G,e,f,c)
    5: else
    6: relabel(u)
    7: return }
```

In the following example we always stick to the same active node u until it becomes inactive but this is not required.

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

relabel
G

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

relabel 6 times

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

relabel

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

relabel 6 times

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

13.1 Generic Push Relabel

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

relabel

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

13.1 Generic Push Relabel

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

relabel

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

relabel

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

relabel 6 times

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

relabel 7 times

Preflow Push Algorithm

Preflow Push Algorithm

push

Preflow Push Algorithm

Preflow Push Algorithm

relabel

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

Preflow Push Algorithm

13.1 Generic Push Relabel

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

13.1 Generic Push Relabel

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

Preflow Push Algorithm

Preflow Push Algorithm

Preflow Push Algorithm

non-saturated push

G

Preflow Push Algorithm

Analysis

Note that the lemma is almost trivial. A node \bar{v} having excess ' flow means that the current preflow ships something to v. The ; residual graph allows to undo flow. Therefore, there must ex' ist a path that can undo the shipment and move it back to $s .1$: However, a formal proof is required.

Lemma 71

An active node has a path to s in the residual graph.

Analysis

Lemma 71

An active node has a path to s in the residual graph.

Proof.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.

Analysis

Lemma 71

An active node has a path to s in the residual graph.

Proof.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- In the following we show that a node $b \in B$ has excess flow $f(b)=0$ which gives the lemma.

Analysis

Lemma 71

An active node has a path to s in the residual graph.

Proof.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- In the following we show that a node $b \in B$ has excess flow $f(b)=0$ which gives the lemma.
- In the residual graph there are no edges into A, and, hence, no edges leaving $A /$ entering B can carry any flow.

Analysis

Lemma 71

An active node has a path to s in the residual graph.

Proof.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- In the following we show that a node $b \in B$ has excess flow $f(b)=0$ which gives the lemma.
- In the residual graph there are no edges into A, and, hence, no edges leaving A /entering B can carry any flow.
- Let $f(B)=\sum_{v \in B} f(v)$ be the excess flow of all nodes in B.

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have
$f(B)$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
f(B)=\sum_{b \in B} f(b)
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right)
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right)
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
& =\sum_{b \in B} \sum_{v \in A} f(v, b)-\sum_{b \in B} \sum_{v \in A} f(b, v)+\sum_{b \in B} \sum_{v \in B} f(v, b)-\sum_{b \in B} \sum_{v \in B} f(b, v)
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
& f(B)=\sum_{b \in B} f(b) \\
&=\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
&=\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
&=\sum_{b \in B} \sum_{v \in A} f(v, b)-\sum_{b \in B} \sum_{v \in A} f(b, v)+\sum_{b \in B} \sum_{v \in B} f(v, b)-\sum_{b \in B} \sum_{v \in B} f(b, v) \\
&=\mathbf{0}
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
& =\sum_{b \in B} \sum_{v \in A} f(v, b)-\sum_{b \in B} \sum_{v \in A} f(b, v)
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
& =\sum_{b \in B} \sum_{v \in A} \frac{f(v, b)}{\mathbf{~}}-\sum_{b \in B} \sum_{v \in A} f(b, v)
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
& f(B)=\sum_{b \in B} f(b) \\
&=\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
&=\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
&=\sum_{b \in B} \sum_{v \in A} f(v, b)-\sum_{b \in B} \sum_{v \in A} f(b, v) \\
& \quad=\mathbf{0}
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
& =\quad-\sum_{b \in B} \sum_{v \in A} f(b, v)
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
& f(B)=\sum_{b \in B} f(b) \\
&=\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
&=\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
&= \\
&-\sum_{b \in B} \sum_{v \in A} f(b, v) \\
& \geq \mathbf{0}
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
& = \\
& \leq 0
\end{aligned}
$$

Let $f: E \rightarrow \mathbb{R}_{0}^{+}$be a preflow. We introduce the notation

$$
f(x, y)= \begin{cases}0 & (x, y) \notin E \\ f((x, y)) & (x, y) \in E\end{cases}
$$

We have

$$
\begin{aligned}
f(B) & =\sum_{b \in B} f(b) \\
& =\sum_{b \in B}\left(\sum_{v \in V} f(v, b)-\sum_{v \in V} f(b, v)\right) \\
& =\sum_{b \in B}\left(\sum_{v \in A} f(v, b)+\sum_{v \in B} f(v, b)-\sum_{v \in A} f(b, v)-\sum_{v \in B} f(b, v)\right) \\
& = \\
& \leq 0
\end{aligned}
$$

Hence, the excess flow $f(b)$ must be 0 for every node $b \in B$.

Analysis

Lemma 72

The label of a node cannot become larger than $2 n-1$.

Analysis

Lemma 72

The label of a node cannot become larger than $2 n-1$.

Proof.

- When increasing the label at a node u there exists a path from u to s of length at most $n-1$. Along each edge of the path the height/label can at most drop by 1 , and the label of the source is n.

Analysis

Lemma 72

The label of a node cannot become larger than $2 n-1$.

Proof.

- When increasing the label at a node u there exists a path from u to s of length at most $n-1$. Along each edge of the path the height/label can at most drop by 1 , and the label of the source is n.

Lemma 73
There are only $\mathcal{O}\left(n^{2}\right)$ relabel operations.

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(m n)$.

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(\mathrm{mn})$.

Proof.

- Suppose that we just made a saturating push along (u,v).

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(m n)$.

Proof.

- Suppose that we just made a saturating push along (u, v).
- Hence, the edge (u, v) is deleted from the residual graph.

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(\mathrm{mn})$.

Proof.

- Suppose that we just made a saturating push along (u,v).
- Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(\mathrm{mn})$.

Proof.

- Suppose that we just made a saturating push along (u,v).
- Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- Currently, $\ell(u)=\ell(v)+1$, as we only make pushes along admissible edges.

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(\mathrm{mn})$.

Proof.

- Suppose that we just made a saturating push along (u,v).
- Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- Currently, $\ell(u)=\ell(v)+1$, as we only make pushes along admissible edges.
- For a push from v to u the edge (v, u) must become admissible. The label of v must increase by at least 2 .

Analysis

Lemma 74

The number of saturating pushes performed is at most $\mathcal{O}(m n)$.

Proof.

- Suppose that we just made a saturating push along (u,v).
- Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- Currently, $\ell(u)=\ell(v)+1$, as we only make pushes along admissible edges.
- For a push from v to u the edge (v, u) must become admissible. The label of v must increase by at least 2 .
- Since the label of v is at most $2 n-1$, there are at most n pushes along (u, v).

Lemma 75

The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Lemma 75

The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Proof.

- Define a potential function $\Phi(f)=\sum$ active nodes $v \ell(v)$

Lemma 75

The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Proof.

- Define a potential function $\Phi(f)=\sum_{\text {active nodes } v} \ell(v)$
- A saturating push increases Φ by $\leq 2 n$ (when the target node becomes active it may contribute at most $2 n$ to the sum).

Lemma 75

The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Proof.

- Define a potential function $\Phi(f)=\sum_{\text {active nodes } v} \ell(v)$
- A saturating push increases Φ by $\leq 2 n$ (when the target node becomes active it may contribute at most $2 n$ to the sum).
- A relabel increases Φ by at most 1 .

Lemma 75

The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Proof.

- Define a potential function $\Phi(f)=\sum$ active nodes $v \ell(v)$
- A saturating push increases Φ by $\leq 2 n$ (when the target node becomes active it may contribute at most $2 n$ to the sum).
- A relabel increases Φ by at most 1 .
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.

Lemma 75

The number of non-saturating pushes performed is at most $\mathcal{O}\left(n^{2} m\right)$.

Proof.

- Define a potential function $\Phi(f)=\sum$ active nodes $v \ell(v)$
- A saturating push increases Φ by $\leq 2 n$ (when the target node becomes active it may contribute at most $2 n$ to the sum).
- A relabel increases Φ by at most 1 .
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,
\#non-saturating_pushes \leq \#relabels $+2 n \cdot \#$ saturating_pushes

$$
\leq \mathcal{O}\left(n^{2} m\right)
$$

Analysis

Theorem 76

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}\left(n^{2} m\right)$.

Analysis

Proof:

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_{f}

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_{f}
- check whether (u, v) needs to be deleted (saturating push)

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_{f}
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_{f}
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

- check for all outgoing edges if they become admissible

Analysis

Proof:

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_{f}
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

- check for all outgoing edges if they become admissible
- check for all incoming edges if they become non-admissible

Analysis

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_{f}). Then we use the discharge-operation:

```
Algorithm 4 discharge (u)
    1: while \(u\) is active do
2: \(\quad v \leftarrow\) u.current-neighbour
3: if \(v=\) null then
4: relabel \((u)\)
5: u.current-neighbour \(\leftarrow\) u.neighbour-list-head
6: else
7:
8:
    if \((u, v)\) admissible then \(\operatorname{push}(u, v)\)
    else \(u\).current-neighbour \(\leftarrow v . n e x t-i n-l i s t\)
```

Note that u.current-neighbour is a global variable. It is only changed within the discharge routine, but keeps its value between consecutive calls to discharge.

Lemma 77

If $v=$ null in Line 3, then there is no outgoing admissible edge from u.

Proof.

- While pushing from u the current-neighbour pointer is only advanced if the current edge is not admissible.
- The only thing that could make the edge admissible again would be a relabel at u.
- If we reach the end of the list ($v=$ null) all edges are not admissible.

This shows that discharge (u) is correct, and that we can perform a relabel in Line 4.

13.2 Relabel to Front

```
Algorithm 1 relabel-to-front(G,s,t)
    1: initialize preflow
    2: initialize node list L containing V\{s,t} in any order
    3: foreach }u\inV\{s,t}\mathrm{ do
    4: u.current-neighbour }\leftarrowu.neighbour-list-head
    5: u\leftarrowL.head
    6: while }u\not=\mathrm{ null do
    7: }\quad\mathrm{ old-height }\leftarrow\ell(u
    8: discharge(u)
    9: if \ell(u)> old-height then // relabel happened
10: move }u\mathrm{ to the front of L
11:}u\leftarrowu.nex
```


13.2 Relabel to Front

Lemma 78 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

1. The sequence L is topologically sorted w.r.t. the set of admissible edges; this means for an admissible edge (x, y) the node x appears before y in sequence L.
2. No node before u in the list L is active.

Proof:

- Initialization:

1. In the beginning s has label $n \geq 2$, and all other nodes have label 0 . Hence, no edge is admissible, which means that any ordering L is permitted.
2. We start with u being the head of the list; hence no node before u can be active

- Maintenance:

1. \downarrow Pushes do no create any new admissible edges. Therefore, if discharge() does not relabel u, L is still topologically sorted.

- After relabeling, u cannot have admissible incoming edges as such an edge (x, u) would have had a difference $\ell(x)-\ell(u) \geq 2$ before the re-labeling (such edges do not exist in the residual graph).
Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissible edges leaving u that were generated by the relabeling.

13.2 Relabel to Front

Proof:

- Maintenance:

2. If we do a relabel there is nothing to prove because the only node before u^{\prime} (u in the next iteration) will be the current u; the discharge (u) operation only terminates when u is not active anymore.

For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissible arc. However, all admissible arc point to successors of u.

Note that the invariant means that for $u=$ null we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

13.2 Relabel to Front

Lemma 79

There are at most $\mathcal{O}\left(n^{3}\right)$ calls to discharge (u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have $u=$ null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\# r e l a b e l s+1)=\mathcal{O}\left(n^{3}\right)$.

13.2 Relabel to Front

Lemma 80
The cost for all relabel-operations is only $\mathcal{O}\left(n^{2}\right)$.

A relabel-operation at a node is constant time (increasing the label and resetting u.current-neighbour). In total we have $\mathcal{O}\left(n^{2}\right)$ relabel-operations.

13.2 Relabel to Front

Note that by definition a saturating push operation $\left(\min \left\{c_{f}(e), f(u)\right\}=c_{f}(e)\right)$ can at the same time be a non-saturating push operation $\left(\min \left\{c_{f}(e), f(u)\right\}=f(u)\right)$.

Lemma 81

The cost for all saturating push-operations that are not also non-saturating push-operations is only $\mathcal{O}(\mathrm{mn})$.

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.
This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree (u) + 1 many entries (+1 for null-entry).

13.2 Relabel to Front

Lemma 82

The cost for all non-saturating push-operations is only $\mathcal{O}\left(n^{3}\right)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}\left(n^{3}\right)$ such operations.

Theorem 83
The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}\left(n^{3}\right)$.

13.3 Highest Label

$$
\begin{aligned}
& \text { Algorithm } 6 \text { highest-label }(G, s, t) \\
& \hline \text { 1: initialize preflow } \\
& \text { 2: foreach } u \in V \backslash\{s, t\} \text { do } \\
& \text { 3: } \quad u . c u r r e n t-n e i g h b o u r \leftarrow u \text {.neighbour-list-head } \\
& \text { 4: while } \exists \text { active node } u \text { do } \\
& \text { 5: } \quad \text { select active node } u \text { with highest label } \\
& \text { 6: } \quad \text { discharge }(u)
\end{aligned}
$$

13.3 Highest Label

Lemma 84
When using highest label the number of non-saturating pushes is only $\mathcal{O}\left(n^{3}\right)$.

A push from a node on level ℓ can only "activate" nodes on levels strictly less than ℓ.

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#$ relabels +1$)=\mathcal{O}\left(n^{3}\right)$.

13.3 Highest Label

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $\mathcal{O}\left(n^{3}\right)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Question:

How do we find the next node for a discharge operation?

13.3 Highest Label

Maintain lists $L_{i}, i \in\{0, \ldots, 2 n\}$, where list L_{i} contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_{k}, L_{k-1}, \ldots, L_{0}$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list $k-1$ must be non-empty (i.e., the search takes constant time).

13.3 Highest Label

Hence, the total time required for searching for active nodes is at most

$$
\mathcal{O}\left(n^{3}\right)+n(\# n o n-s a t u r a t i n g-p u s h e s-t o-s-o r-t)
$$

Lemma 85

The number of non-saturating pushes to s or t is at most $\mathcal{O}\left(n^{2}\right)$.

With this lemma we get
Theorem 86
The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}\left(n^{3}\right)$.

13.3 Highest Label

Proof of the Lemma.

- We only show that the number of pushes to the source is at most $\mathcal{O}\left(n^{2}\right)$. A similar argument holds for the target.
- After a node v (which must have $\ell(v)=n+1$) made a non-saturating push to the source there needs to be another node whose label is increased from $\leq n+1$ to $n+2$ before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold $n+2$ at most once, v can make at most n pushes to the source.
- As this holds for every node the total number of pushes to the source is at most $\mathcal{O}\left(n^{2}\right)$.

Mincost Flow

Problem Definition:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
$$

Mincost Flow

Problem Definition:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
$$

- $G=(V, E)$ is a directed graph.

Mincost Flow

Problem Definition:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
$$

- $G=(V, E)$ is a directed graph.
- $u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ is the capacity function.

Mincost Flow

Problem Definition:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

- $G=(V, E)$ is a directed graph.
- $u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ is the capacity function.
- $c: E \rightarrow \mathbb{R}$ is the cost function (note that $c(e)$ may be negative).

Mincost Flow

Problem Definition:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

- $G=(V, E)$ is a directed graph.
- $u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ is the capacity function.
- $c: E \rightarrow \mathbb{R}$ is the cost function (note that $c(e)$ may be negative).
- $b: V \rightarrow \mathbb{R}, \sum_{v \in V} b(v)=0$ is a demand function.

Solve Maxflow Using Mincost Flow

Solve Maxflow Using Mincost Flow

- Given a flow network for a standard maxflow problem.

Solve Maxflow Using Mincost Flow

- Given a flow network for a standard maxflow problem.
- Set $b(v)=0$ for every node. Keep the capacity function u for all edges. Set the cost $c(e)$ for every edge to 0 .

Solve Maxflow Using Mincost Flow

- Given a flow network for a standard maxflow problem.
- Set $b(v)=0$ for every node. Keep the capacity function u for all edges. Set the cost $c(e)$ for every edge to 0 .
- Add an edge from t to s with infinite capacity and cost -1 .

Solve Maxflow Using Mincost Flow

- Given a flow network for a standard maxflow problem.
- Set $b(v)=0$ for every node. Keep the capacity function u for all edges. Set the cost $c(e)$ for every edge to 0 .
- Add an edge from t to s with infinite capacity and cost -1 .
- Then, $\operatorname{val}\left(f^{*}\right)=-\operatorname{cost}\left(f_{\min }\right)$, where f^{*} is a maxflow, and $f_{\text {min }}$ is a mincost-flow.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- Set $b(v)=0$ for every node apart from s or t. Set $b(s)=-k$ and $b(t)=k$.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- Set $b(v)=0$ for every node apart from s or t. Set $b(s)=-k$ and $b(t)=k$.
- Set edge-costs to zero, and keep the capacities.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- Set $b(v)=0$ for every node apart from s or t. Set $b(s)=-k$ and $b(t)=k$.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value at least k if and only if the mincost-flow problem is feasible.

Generalization

Our model:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
$$

where $b: V \rightarrow \mathbb{R}, \sum_{v} b(v)=0 ; u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\} ; c: E \rightarrow \mathbb{R} ;$

Generalization

Our model:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
$$

where $b: V \rightarrow \mathbb{R}, \sum_{v} b(v)=0 ; u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\} ; c: E \rightarrow \mathbb{R} ;$

A more general model?

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

where $a: V \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R} ; \ell: E \rightarrow \mathbb{R} \cup\{-\infty\}, u: E \rightarrow \mathbb{R} \cup\{\infty\}$
$c: E \rightarrow \mathbb{R}$;

Generalization

Differences

- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound $u(e)$.
- The demand at a node v may have lower bound $a(v)$ and upper bound $b(v)$ instead of just lower bound = upper bound $=b(v)$.

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.
Add edge (r, v) for all $v \in V$.

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.
Add edge (r, v) for all $v \in V$.
Set $\ell(e)=c(e)=0$ for these edges.

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.
Add edge (r, v) for all $v \in V$.
Set $\ell(e)=c(e)=0$ for these edges.

Set $u(e)=b(v)-a(v)$ for edge (r, v).

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.
Add edge (r, v) for all $v \in V$.
Set $\ell(e)=c(e)=0$ for these edges.

Set $u(e)=b(v)-a(v)$ for edge (r, v).

Set $a(v)=b(v)$ for all $v \in V$.

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.
Add edge (r, v) for all $v \in V$.
Set $\ell(e)=c(e)=0$ for these edges.

Set $u(e)=b(v)-a(v)$ for edge (r, v).

Set $a(v)=b(v)$ for all $v \in V$.
Set $b(r)=-\sum_{v \in V} b(v)$.

Reduction I

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

We can assume that $a(v)=b(v)$:
Add new node r.
Add edge (r, v) for all $v \in V$.
Set $\ell(e)=c(e)=0$ for these edges.

Set $u(e)=b(v)-a(v)$ for edge (r, v).

Set $a(v)=b(v)$ for all $v \in V$.
Set $b(r)=-\sum_{v \in V} b(v)$.
$-\sum_{v} b(v)$ is negative; hence r is only sending flow.

Reduction II

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
$$

We can assume that either $\boldsymbol{\ell}(e) \neq-\infty$ or $\boldsymbol{u}(e) \neq \infty$:

Reduction II

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

We can assume that either $\ell(e) \neq-\infty$ or $\boldsymbol{u}(e) \neq \infty$:

If $c(e)=0$ we can contract the edge/identify nodes u and v.

Reduction II

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

We can assume that either $\boldsymbol{\ell}(e) \neq-\infty$ or $\boldsymbol{u}(e) \neq \infty$:

If $c(e)=0$ we can contract the edge/identify nodes u and v.
If $c(e) \neq 0$ we can transform the graph so that $c(e)=0$.

Reduction II

We can transform any network so that a particular edge has $\operatorname{cost} c(e)=0$:

Reduction II

We can transform any network so that a particular edge has $\operatorname{cost} c(e)=0$:

Reduction II

We can transform any network so that a particular edge has $\operatorname{cost} c(e)=0$:

Additionally we set $b(u)=0$.

Reduction III

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

We can assume that $\boldsymbol{\ell}(e) \neq-\infty$:

Replace the edge by an edge in opposite direction.

Reduction IV

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

We can assume that $\boldsymbol{\ell}(e)=0$:

The added edges have infinite capacity and cost $c(e) / 2$.

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.
- She can buy new napkins at p cents each.

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes $k>m$ days and costs s cents each.

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes $k>m$ days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes $k>m$ days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

buy edges: $\begin{aligned} & \text { upper bound: } u\left(e_{i}\right)=\infty ; \\ & \text { lower bound: } \ell\left(e_{i}\right)=0 ; \\ & \text { cost: } c(e)=p\end{aligned}$

forward edges:
upper bound: $u\left(e_{i}\right)=\infty$;
lower bound: $\ell\left(e_{i}\right)=0$;
cost: $c(e)=0$

slow edges:

$$
\begin{aligned}
& \text { upper bound: } u\left(e_{i}\right)=\infty \text {; } \\
& \text { lower bound: } \ell\left(e_{i}\right)=0 \text {; } \\
& \text { cost: } c(e)=s
\end{aligned}
$$

fast edges:

$$
\begin{aligned}
& \text { upper bound: } u\left(e_{i}\right)=\infty ; \\
& \text { lower bound: } \ell\left(e_{i}\right)=0 ; \\
& \text { cost: } c(e)=f
\end{aligned}
$$

trash edges: $\begin{aligned} & \text { upper bound: } u\left(e_{i}\right)=\infty ; \\ & \text { lower bound: } \ell\left(e_{i}\right)=0 ; \\ & \text { cost: } c(e)=0\end{aligned}$

Residual Graph

Version A:

The residual graph G^{\prime} for a mincost flow is just a copy of the graph G.

If we send $f(e)$ along an edge, the corresponding edge e^{\prime} in the residual graph has its lower and upper bound changed to $\ell\left(e^{\prime}\right)=\ell(e)-f(e)$ and $u\left(e^{\prime}\right)=u(e)-f(e)$.

Residual Graph

Version A:

The residual graph G^{\prime} for a mincost flow is just a copy of the graph G.

If we send $f(e)$ along an edge, the corresponding edge e^{\prime} in the residual graph has its lower and upper bound changed to $\ell\left(e^{\prime}\right)=\ell(e)-f(e)$ and $u\left(e^{\prime}\right)=u(e)-f(e)$.

Version B:

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of $-c((u, v))$.

14 Mincost Flow

A circulation in a graph $G=(V, E)$ is a function $f: E \rightarrow \mathbb{R}^{+}$that has an excess flow $f(v)=0$ for every node $v \in V$.

14 Mincost Flow

A circulation in a graph $G=(V, E)$ is a function $f: E \rightarrow \mathbb{R}^{+}$that has an excess flow $f(v)=0$ for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \leq u(e)$ for every edge of G.

Lemma 87

A given flow is a mincost-flow if and only if the corresponding residual graph G_{f} does not have a feasible circulation of negative cost.

Lemma 87

A given flow is a mincost-flow if and only if the corresponding residual graph G_{f} does not have a feasible circulation of negative cost.
\Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Lemma 87

A given flow is a mincost-flow if and only if the corresponding residual graph G_{f} does not have a feasible circulation of negative cost.
\Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Then $f+g$ is a feasible flow with cost $\operatorname{cost}(f)+\operatorname{cost}(g)<\operatorname{cost}(f)$. Hence, f is not minimum cost.

Lemma 87

A given flow is a mincost-flow if and only if the corresponding residual graph G_{f} does not have a feasible circulation of negative cost.
\Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Then $f+g$ is a feasible flow with cost $\operatorname{cost}(f)+\operatorname{cost}(g)<\operatorname{cost}(f)$. Hence, f is not minimum cost.
\Leftarrow Let f be a non-mincost flow, and let f^{*} be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Lemma 87

A given flow is a mincost-flow if and only if the corresponding residual graph G_{f} does not have a feasible circulation of negative cost.
\Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Then $f+g$ is a feasible flow with cost
$\operatorname{cost}(f)+\operatorname{cost}(g)<\operatorname{cost}(f)$. Hence, f is not minimum cost.
\Leftarrow Let f be a non-mincost flow, and let f^{*} be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^{*}-f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending $-f$ in the residual graph (pushing all flow back) we arrive at the original graph; for this f^{*} is clearly feasible)

14 Mincost Flow

Lemma 88
A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.

14 Mincost Flow

Lemma 88

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \rightarrow \mathbb{R}$.

Proof.

- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

14 Mincost Flow

$$
\begin{aligned}
& \text { Algorithm } 23 \text { CycleCanceling }(G=(V, E), c, u, b) \\
& \hline \text { 1: establish a feasible flow } f \text { in } G \\
& \text { 2: while } G_{f} \text { contains negative cycle do } \\
& \text { 3: } \quad \text { use Bellman-Ford to find a negative circuit } Z \\
& \text { 4: } \quad \delta \leftarrow \min \left\{u_{f}(e) \mid e \in Z\right\} \\
& \text { 5: } \quad \text { augment } \delta \text { units along } Z \text { and update } G_{f}
\end{aligned}
$$

How do we find the initial feasible flow?

- Connect new node s to all nodes with negative $b(v)$-value.
- Connect nodes with positive $b(v)$-value to a new node t.
- There exist a feasible flow in the original graph iff in the resulting graph there exists an s - t flow of value

$$
\sum_{v: b(v)<0}(-b(v))=\sum_{v: b(v)>0} b(v) .
$$

14 Mincost Flow

14 Mincost Flow

Lemma 89

The improving cycle algorithm runs in time $\mathcal{O}\left(\mathrm{nm}^{2} \mathrm{CU}\right)$, for integer capacities and costs, when for all edges $e,|c(e)| \leq C$ and $|u(e)| \leq U$.

- Running time of Bellman-Ford is $\mathcal{O}(\mathrm{mn})$.
- Pushing flow along the cycle can be done in time $\mathcal{O}(n)$.
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval

$$
[-m C U, \ldots,+m C U] .
$$

Note that this lemma is weak since it does not allow for edges with infinite capacity.

14 Mincost Flow

A general mincost flow problem is of the following form:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

where $a: V \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R} ; \ell: E \rightarrow \mathbb{R} \cup\{-\infty\}, u: E \rightarrow \mathbb{R} \cup\{\infty\}$ $c: E \rightarrow \mathbb{R}$;

Lemma 90 (without proof)

A general mincost flow problem can be solved in polynomial time.

Part V

Matchings

Matching

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.
- Shortest augmenting path: $\mathcal{O}\left(m n^{2}\right)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m \sqrt{n})$.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex \mathbf{w}.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 91
A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

As $\left|M^{\prime}\right|>|M|$ there is one connected component that is a path P for which both endpoints are incident to edges from $M^{\prime} . P$ is an alternating path.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 92

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M^{\prime}=M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M^{\prime}.

[^3]
17 Augmenting Paths for Matchings

Proof

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. $M(z)$.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.
$-P_{1} \circ P_{1}^{\prime}$ is augmenting path in $M(z)$.

How to find an augmenting path?

Construct an alternating tree.

How to find an augmenting path?

Construct an alternating tree.

17 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

17 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3: y is already contained in T as an odd vertex
ignore successor y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y
does not happen in bipartite graphs

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug ↔ true;
        free - free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\).enqueue(mate[ \(y]\) );
```

$$
\operatorname{graph} G=\left(S \cup S^{\prime}, E\right)
$$

$$
\begin{aligned}
S & =\{1, \ldots, n\} \\
S^{\prime} & =\left\{1^{\prime}, \ldots, n^{\prime}\right\}
\end{aligned}
$$

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue ();
10: \(\quad\) for \(y \in A_{x}\) do
11: \(\quad\) if mate \([y]=0\) then
12: \(\quad\) augm (mate, parent, \(y\) );
13: \(\quad\) aug \(\leftarrow\) true;
14: \(\quad\) free \(\leftarrow\) free -1 ;
15:
16:
17:
18:
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\). enqueue (mate \([y]\) );
```

start with an empty matching

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(-n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
        while aug \(=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm (mate, parent, \(y\) );
            aug ヶ true;
        free \(\leftarrow\) free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\). enqueue(mate[ \(y]\) );
```

free: number of unmatched nodes in S
r : root of current tree

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
        while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free \(\leftarrow\) free - 1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
\(18:\)
        \(Q\).enqueue (mate \([y]\) );
```

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug ↔ true;
        free - free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18:
        \(Q\). enqueue( mate[ \(y]\) );
```

r is the new node that we grow from.

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free - free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18: \(\quad Q\). enqueue (mate[ \(y]\) );
```

If r is free start tree construction

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\). append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while aug \(=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
12: augm (mate, parent, \(y\) );
13: aug ヶtrue;
14: \(\quad\) free \(\leftarrow\) free - 1 ;
15: else
16: if \(\operatorname{parent}[y]=0\) then
17: parent \([y] \leftarrow x\);
18: \(\quad Q\). enqueue (mate[ \(y]\) );
```

Initialize an empty tree. Note that only nodes i^{\prime} have parent pointers.

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    while aug \(=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free - free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18: \(\quad Q\). enqueue (mate[ \(y]\) );
```

Q is a queue (BFS!!!).
aug is a Boolean that stores whether we already found an augmenting path.

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
12: augm (mate, parent, \(y\) );
13: \(\quad\) aug \(\leftarrow\) true;
14: \(\quad\) free \(\leftarrow\) free -1 ;
15:
16:
17:
18: \(\quad Q\).enqueue (mate \([y]\) );
else
    if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
```

as long as we did not augment and there are still unexamined leaves continue...

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free - free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18: \(\quad Q\).enqueue (mate[ \(y]\) );
```

take next unexamined leaf

```
Algorithm 24 BiMatch ( \(G\), match)
    for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    if mate \([r]=0\) then
    for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\). append \((r) ;\) aug \(\leftarrow\) false;
    while aug \(=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
    if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug ↔ true;
        free - free -1 ;
    else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18: \(\quad Q\). enqueue (mate[ \(y]\) );
```

if x has unmatched neighbour we found an augmenting path (note that $y \neq r$ because we are in a bipartite graph)

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
12: \(\quad\) augm (mate, parent, \(y\) );
13: \(\quad\) aug \(\leftarrow\) true;
14: \(\quad\) free - free -1 ;
15:
16:
17:
        parent \([y] \leftarrow x\);
18: \(\quad Q\).enqueue (mate[ \(y]\) );
```

do an augmentation...

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug - true;
        free - free - 1 ;
    else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18: \(\quad Q\). enqueue (mate \([y]\) );
```

setting $a u g=$ true ensures that the tree construction will not continue

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free - free - 1 ;
    else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18: \(\quad Q\).enqueue (mate[ \(y]\) );
```

reduce number of free nodes

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\).dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
12: augm (mate, parent, \(y\) );
13: \(\quad\) aug \(\leftarrow\) true;
14: \(\quad\) free - free -1 ;
18:
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
\(Q\).enqueue(mate[ \(y]\) );
```

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
7: \(\quad Q \leftarrow \emptyset ; Q\). append \((r) ;\) aug \(\leftarrow\) false;
8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: \(\quad\) if mate \([y]=0\) then
12: \(\quad\) augm (mate, parent, \(y\) );
13: \(\quad\) aug \(\leftarrow\) true;
14: \(\quad\) free \(\leftarrow\) free -1 ;
        else
            if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
18: \(\quad Q\). enqueue (mate \([y]\);
15:
16:
17
    \(Q\). enqueue (mate \([y]\) );
```

...put it into the tree

```
Algorithm 24 BiMatch ( \(G\), match)
    1: for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free - free - 1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
18:
                \(Q\).enqueue (mate[ \(y]\) );
```

add its buddy to the set of unexamined leaves

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

The cycle $w \leftrightarrow y-x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path $u-w$ is called the stem of the blossom.

Flowers and Blossoms

Definition 93

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

Flowers and Blossoms

Definition 93

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).

Flowers and Blossoms

Definition 93

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Flowers and Blossoms

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \backslash B$ that had at least one edge to a vertex from B.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Example: Blossom Algorithm

18 Maximum Matching in General Graphs

Example: Blossom Algorithm

18 Maximum Matching in General Graphs

Example: Blossom Algorithm

18 Maximum Matching in General Graphs

Example: Blossom Algorithm

18 Maximum Matching in General Graphs

Example: Blossom Algorithm

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Lemma 94

If G^{\prime} contains an augmenting path P^{\prime} starting at r (or the pseudo-node containing r) w.r.t. the matching M^{\prime} then G contains an augmenting path starting at r w.r.t. matching M.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_{2} from w to k that ends in a matching edge.
- $P_{1} \circ(i, w) \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.
- If $k=w$ then $P_{1} \circ(i, w) \circ(w, \ell) \circ P_{3}$ is an alternating path.

Correctness

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

Correctness

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

Correctness

Proof.
Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

Correctness

Proof.
Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

- The path $r \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.

Correctness

Lemma 95

If G contains an augmenting path P from r to q w.r.t. matching M then G^{\prime} contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M^{\prime}.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem
Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.
$(b, j) \circ P_{2}$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:

Correctness

Case 2: non-empty stem

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

This path must go between r and q.

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

Search for an augmenting path starting at r.

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

$A(i)$ contains neighbours of node i. We create a copy $\bar{A}(i)$ so that we later can shrink blossoms.

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found \leftarrowfalse
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

found is just a Boolean that allows to abort the search process...

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

In the beginning no node is in the tree.

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }\not=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

Put the root in the tree. list could also be a set or a stack.

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i) for all nodes 
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

As long as there are nodes with unexamined neighbours...

```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list }=\emptyset\mathrm{ do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

 ...examine the next one
    ```
Algorithm 25 search(r,found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found }\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list # \emptyset do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then return
```

If you found augmenting path abort and start from next root.

```
Algorithm 26 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

Examine the neighbours of a node i

```
Algorithm 26 examine( \(i\), found \()\)
for all \(j \in \bar{A}(i)\) do
2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
3: \(\quad\) if \(j\) is unmatched then
4: \(\quad q \leftarrow j\);
5: \(\quad \operatorname{pred}(q) \leftarrow i\);
6: found \(\leftarrow\) true;
7: return
8: \(\quad\) if \(j\) is matched and unlabeled then
9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

For all neighbours j do...

```
Algorithm 26 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

You have found a blossom...

```
Algorithm 26 examine(i,found)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
3: if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

You have found a free node which gives you an augmenting path.

```
Algorithm 26 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

If you find a matched node that is not in the tree you grow...

```
Algorithm 26 examine( \(i\), found \()\)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate \((j)\) to list
```

mate (j) is a new node from which you can grow further.

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Contract blossom identified by nodes i and j

```
Algorithm 27 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

Get all nodes of the blossom.
Time: $\mathcal{O}(m)$

Algorithm 27 contract (i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Identify all neighbours of b.
Time: $\mathcal{O}(m)$ (how?)

Algorithm 27 contract (i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph
b will be an even node, and it has unexamined neighbours.

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Every node that was adjacent to a node in B is now adjacent to b

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Only for making a blossom expansion easier.

Algorithm 27 contract (i, j)

1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
3: label b even and add to list
4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

Only delete links from nodes not in B to B.
When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$
n \cdot(\mathcal{O}(m n)+\mathcal{O}(n))=\mathcal{O}\left(m n^{2}\right)
$$

Example: Blossom Algorithm

A Fast Matching Algorithm

```
Algorithm 28 Bimatch-Hopcroft-Karp \((G)\)
    1: \(M \leftarrow \emptyset\)
    2: repeat
    3: \(\quad\) let \(\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}\) be maximal set of
    4: \(\quad\) vertex-disjoint, shortest augmenting path w.r.t. \(M\).
    5: \(\quad M \leftarrow M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)\)
    6: until \(\mathcal{P}=\emptyset\)
    7: return \(M\)
```

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis Hopcroft-Karp

Lemma 96
Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Analysis Hopcroft-Karp

Lemma 96
Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.

Analysis Hopcroft-Karp

Lemma 96

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.

Analysis Hopcroft-Karp

Lemma 96

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.

Analysis Hopcroft-Karp

Lemma 96

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.
- The graph contains $k \stackrel{\text { des }}{=}\left|M^{*}\right|-|M|$ more red edges than blue edges.

Analysis Hopcroft-Karp

Lemma 96

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.
- The graph contains $k \stackrel{\text { def }}{=}\left|M^{*}\right|-|M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Analysis Hopcroft-Karp

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).

Analysis Hopcroft-Karp

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).
- $M^{\prime} \stackrel{\text { def }}{=} M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.

Analysis Hopcroft-Karp

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).
- $M^{\prime} \xlongequal{\text { def }} M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.
- Let P be an augmenting path in M^{\prime}.

Analysis Hopcroft-Karp

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell=\left|P_{i}\right|$).
- $M^{\prime} \xlongequal{\text { def }} M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.
- Let P be an augmenting path in M^{\prime}.

Lemma 97
The set $A \stackrel{\text { def }}{=} M \oplus\left(M^{\prime} \oplus P\right)=\left(P_{1} \cup \cdots \cup P_{k}\right) \oplus P$ contains at least $(k+1) \ell$ edges.

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.
- Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $\left|M^{\prime}\right|=|M|+k+1$.

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.
- Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $\left|M^{\prime}\right|=|M|+k+1$.
- Each of these paths is of length at least ℓ.

Analysis Hopcroft-Karp

Lemma 98

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Analysis Hopcroft-Karp

Lemma 98

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.

Analysis Hopcroft-Karp

Lemma 98

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.

Analysis Hopcroft-Karp

Lemma 98

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.

Analysis Hopcroft-Karp

Lemma 98

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell+|P|-1$.

Analysis Hopcroft-Karp

Lemma 98

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell+|P|-1$.
- The lower bound on $|A|$ gives $(k+1) \ell \leq|A| \leq k \ell+|P|-1$, and hence $|P| \geq \ell+1$.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M|+\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^{*} contains $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis Hopcroft-Karp

Lemma 99
The Hopcroft-Karp algorithm requires at most $2 \sqrt{|V|}$ phases.

Analysis Hopcroft-Karp

Lemma 99
The Hopcroft-Karp algorithm requires at most $2 \sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor\sqrt{|V|}\rfloor$ the length of a shortest augmenting path must be at least $\lfloor\sqrt{|V|}\rfloor+1 \geq \sqrt{|V|}$.
- Hence, there can be at most $|V| /(\sqrt{|V|}+1) \leq \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

Lemma 100

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.
construct a "level graph" G^{\prime} :

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ...
- stop when a level (apart from Level 0) contains a free vertex
can be done in time $\mathcal{O}(m)$ by a modified BFS

Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

Analysis Hopcroft-Karp

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is $\mathcal{O}(\mathbf{m n})$

- a search (successful or unsuccessful) takes time $\mathcal{O}(n)$
- a search deletes at least one edge from the level graph
there are at most \boldsymbol{n} phases
Time: $\mathcal{O}\left(m n^{2}\right)$.

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is $\mathcal{O}(\boldsymbol{m})$

- an edge/vertex is traversed at most twice
need at most $\mathcal{O}(\sqrt{ } \sqrt{\boldsymbol{n}})$ phases
- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m \sqrt{n})$.

[^0]: Note that in the picture on the right the tapes are one-directional, and that a READ- or WRITE-operation always advances its tape.

[^1]: Note that in the picture on the right ' the tapes are one-directional, and that a READ- or WRITE-operation always ad-। vances its tape.

[^2]: Note that in the picture on the right ' the tapes are one-directional, and that a READ- or WRITE-operation always advances its tape.

[^3]: 'The above theorem allows for an easier implementation of an augment '
 'ing path algorithm. Once we checked for augmenting paths starting '
 ' from u we don't have to check for such paths in future rounds.

