Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Zi'(:l WiXi
s.t. YueU Zi:ueSi x;i = 1
Vie{l,..., k} xi = 0

Harald Racke 449/575

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix;
s.t. YuelU Zi:ueSi x;i = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Dueu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke 449/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke 450/575

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix
s.t. VueU Xiyes;Xxi = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Ducu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0
EADS Il 18.1 Primal Dual Revisited

Harald Racke

449

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

450/575

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix
s.t. VueU Xiyes;Xxi = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Ducu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
yu = 0
EADS Il 18.1 Primal Dual Revisited

Harald Racke

449

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
> ldentify an element e that is not covered in current primal
integral solution.

:
18.1 Primal Dual Revisited

Harald Racke

450/575

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix
s.t. VueU Xiyes;Xxi = 1
Vie{l,..., k} x;i = 0
Dual Formulation:
max Ducu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0

EADS Il 18.1 Primal Dual Revisited

Harald Racke

449

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
> Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).

18.1 Primal Dual Revisited

Harald Racke

450/575

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix
s.t. VuelU Xiyes;Xi = 1
Vie{l,..., k} x;i = 0
Dual Formulation:
max 2uet Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0

EADS Il 18.1 Primal Dual Revisited

Harald Racke

449

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.

> Increase dual variable y, until a dual constraint becomes
tight (maybe increase by 0!).

» If this is the constraint for set S; set x; = 1 (add this set to
your solution).

18.1 Primal Dual Revisited

Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix
s.t. VuelU Xiyes;Xi = 1
Vie{l,..., k} x;i = 0
Dual Formulation:
max 2uet Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0
EADS Il 18.1 Primal Dual Revisited

Harald Racke

449

Repetition: Primal Dual for Set Cover

Analysis:

T

EADS Il
Harald Racke

18.1 Primal Dual Revisited

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to

your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Repetition: Primal Dual for Set Cover

Analysis:
» For every set §; with x; = 1 we have

D Ve =wj

GESJ'

m EADS Il 18.1 Primal Dual Revisited
Harald Racke

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to

your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Repetition: Primal Dual for Set Cover

Analysis:
» For every set §; with x; = 1 we have
2, Ye=w,

GESJ'

» Hence our cost is

m EADS Il 18.1 Primal Dual Revisited
Harald Racke

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to

your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Repetition: Primal Dual for Set Cover

Analysis:
» For every set §; with x; = 1 we have

D Ve =wj

GESJ'

» Hence our cost is

2 Wi,
J

m EADS Il 18.1 Primal Dual Revisited
Harald Racke

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to

your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Repetition: Primal Dual for Set Cover

Analysis:
» For every set §; with x; = 1 we have

D Ve =wj

GESJ'

» Hence our cost is

ZWJXJ =2, 2. Ve

J e€sS;

18.1 Primal Dual Revisited

Harald Racke

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to
your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Repetition: Primal Dual for Set Cover

Analysis:
» For every set S with x; = 1 we have

D Ve =wj

GESJ'

» Hence our cost is

ZwaJ—Z > ye—ZHJ e €St ve

J e€sS;

18.1 Primal Dual Revisited

Harald Racke

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to
your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Repetition: Primal Dual for Set Cover

Analysis:
» For every set S with x; = 1 we have

D Ve =wj

GESJ'

» Hence our cost is

ZwaJ—Z > ye—ZHJ e €St ve

J e€sS;

<f > ye<f OPT

18.1 Primal Dual Revisited

Harald Racke

451/575

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
» ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
» If this is the constraint for set S; set xj = 1 (add this set to
your solution).

EADS Il 18.1 Primal Dual Revisited
Harald Racke

450

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

452/575

Repetition: Primal Dual for Set Cover

Analysis:
» For every set S with x; = 1 we have

D Ve =wj

EESJ'

» Hence our cost is

ZwaJ_Z Z ye—ZHJ e € Sitl - ye

Jj e€sS;

<f > ¥e<f OPT

EADS Il 18.1 Primal Dual Revisited
Harald Racke 451

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eesi

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

452/575

Repetition: Primal Dual for Set Cover

Analysis:
» For every set S with x; = 1 we have

D Ve =wj

EESJ'

» Hence our cost is

ZwaJ_Z Z ye—ZHJ e € Sitl - ye

Jj e€sS;

<f > ¥e<f OPT

EADS Il 18.1 Primal Dual Revisited
Harald Racke 451

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eesi

If we would also fulfill dual slackness conditions

YVe>0= > xj=1

Jees;

then the solution would be optimal!!l

18.1 Primal Dual Revisited

Harald Racke

452/575

Repetition: Primal Dual for Set Cover

Analysis:
» For every set S with x; = 1 we have

D Ve =wj

EESJ'

» Hence our cost is

Z“’JXJ_Z Z J’e—ZHJ e € Sitl - ye

Jj e€sS;

<f > ¥e<f OPT

EADS Il 18.1 Primal Dual Revisited
Harald Racke 451

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.
We don’t fulfill these constraint but we fulfill an approximate

’ This means
version:

Xj>03 Zye:wj

eESj

If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Jie€s;

then the solution would be optimal!!!

‘m EADS Il 18.1 Primal Dual Revisited EADS Il 18.1 Primal Dual Revisited
Harald Racke 453/575 Harald Racke

452

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.
We don’t fulfill these constraint but we fulfill an approximate

’ This means
version:

Ye>0=>1c< ijsf Xj>0$e§?vye:wj
Jie€S;)i
If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Jie€s;

then the solution would be optimal!!!

‘m EADS Il 18.1 Primal Dual Revisited EADS Il 18.1 Primal Dual Revisited
Harald Racke 453/575 Harald Racke

452

We don’t fulfill these constraint but we fulfill an approximate

version:

This is sufficient to show that the solution is an
f-approximation.

Ye>0=1< > xj<f

Jees;

T

EADS Il
Harald Racke

18.1 Primal Dual Revisited

453/575

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eGSj

If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Jie€s;

then the solution would be optimal!!!

EADS Il 18.1 Primal Dual Revisited
Harald Racke

452

Suppose we have a primal/dual pair

min 2 €% ax 2: b We don’t fulfill th traint but we fulfill imat
st. Vi Siagx; = b st. Vi Siaiyi < ¢ e _on u ese constraint but we fu an approximate
Vv j xj = 0 Vi yi = 0 version:
Ye>0=>1< > x;=f
J:e€s;
This is sufficient to show that the solution is an
f-approximation.
‘m EADS Il 18.1 Primal Dual Revisited EADS Il 18.1 Primal Dual Revisited
Harald Racke 454/575 Harald Réacke

453

Suppose we have a primal/dual pair

min 2 €% ax 2: b We don’t fulfill th int but we fulfill i
st. Vi Siagx; = b st Vi Siayyi < ¢ e -on t fu these constraint but we fu an approximate
v j X; = 0 Vi yi = 0 version:
Ve>0=>1< Z xj<f
and solutions that fulfill approximate slackness conditions: Jie€S;
1 This is sufficient to show that the solution is an
xXj>0=>aijyi=> G f-approximation.
i
Yi > 0= Zainj =< Bbi
J
‘m EADS Il 18.1 Primal Dual Revisited EADS Il 18.1 Primal Dual Revisited
Harald Racke 454/575 Harald Réacke

Then

2. X
J

T

EADS Il
Harald Racke

18.1 Primal Dual Revisited

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi Zj: aijxXj = b; s.t. Vj > aijyi =
Vj X; = 0 Vi Yi =

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0=> Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Then

2. X
J

T

EADS Il
Harald Racke

18.1 Primal Dual Revisited

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi zj; aijxj = b s.t. Vj > aijyi =< Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0= Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Then

right hand side of j-th

dual constraint

J

D i

T

EADS Il
Harald Racke

18.1 Primal Dual Revisited

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi zj; aijxj = b s.t. Vj > aijyi =< Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0= Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Then

chxj 2 Z“uyt Xj

J

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi zj; aijxj = b s.t. Vj > aijyi =< Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0= Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Then

D.cixjl= ad | Xaiyi| x;
J J i
O(Z Z(linj Yi

i J

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi zj; aijxj = b s.t. Vj > aijyi =< Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0= Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Then

D.cixjl= ad | Xaiyi| x;
J J i
O(Z Z(linj Yi

i \j
<aB- > biyi
i

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi zj; aijxj = b s.t. Vj > aijyi =< Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0= Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Then

D.cixjl=) (Z aijyi | X;
J J i
O(Z Zainj Yi

1

J
<«p- Zbiyi

i
dual objective

‘m EADS Il 18.1 Primal Dual Revisited
Harald Racke

455/575

Suppose we have a primal/dual pair

min > Cjix; max 2ibiyi
s.t. Vi zj; aijxj = b s.t. Vj > aijyi =< Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
ot

\%

X >0= Zaijyi
i

yi>0: Zainj —Bbi
J

A

EADS Il 18.1 Primal Dual Revisited
Harald Racke

454

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0

for vertex v € V.

T

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

456/575

Then

EADS I
Harald Racke

2. €)X
J

a (zy) o

o3 (S

i J

< aB > biyi
i

dual objective

18.2 Feedback Vertex Set for Undirected Graphs

455

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0

for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

T

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

456/575

Then

EADS I
Harald Racke

2. €)X
J

a (zy) o

o3 (S
io\J

IA

B> biyi
i

dual objective

18.2 Feedback Vertex Set for Undirected Graphs

455

We can encode this as an instance of Set Cover

T

» Each vertex can be viewed as a set that contains some

cycles.

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

457/575

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

456

Harald Racke

We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some
cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.

18.2 Feedback Vertex Set for Undirected Graphs
457/575

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

456

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.

» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

T ﬂ ﬂ :‘ EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

457/575

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

456

Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs EADS Il 18.2 Feedback Vertex Set for Undirected Graphs

Harald Racke 458/575 Harald Racke

Let € denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min D WyXy
st. VCel€ D,ccxy = 1
Yv xy = 0
Dual Formulation:
max 2.cec e
st. YveV YcpecyYe =< wy
vC yc = 0

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

458/575

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

457

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

T

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

min Dv WyXy

st. VCe€ Dicexv = 1

Yv Xy =
Dual Formulation:
max 2.cecYC
st. YVEV DcypecYe < wy
vC ye = 0
EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
459/575 Harald Racke 458

If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 459/575

Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

min Dv WyXy
st. VCeC Diccxy = 1
Yv Xy =
Dual Formulation:
max 2.cecYC
st. YveV YepecyYe =< wy
vC ye = 0
EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 458

If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 459/575

Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

min Dv WyXy
st. VCeC Diccxy = 1
Vv Xy =
Dual Formulation:
max >.cec YC
st. YveV YepecyYe =< wy
vC ye = 0
EADS I 18.2 Feedback Vertex Set for Undirected Graphs

Harald Racke

458

If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase y¢ until dual constraint for some vertex v

becomes tight.
» set x, = 1.

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 459/575

Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

min Dv WyXy
st. VCeC Diccxy = 1
Vv Xy =
Dual Formulation:
max >.cec YC
st. YveV YepecyYe =< wy
vC ye = 0
EADS I 18.2 Feedback Vertex Set for Undirected Graphs

Harald Racke

458

Then

z Wy Xy
v

T

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

460/575

If we perform the previous dual technique for Set Cover we get
the following:

» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
becomes tight.
» set xy = 1.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

459

Then

Zwvxvzz Z YcXv
v

vV CwveC

T

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

460/575

If we perform the previous dual technique for Set Cover we get
the following:

» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
becomes tight.
» set xy = 1.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

459

Then

Zwvxvzz Z YcXv
v

vV CwveC

>, > Yy

veSCveC

where S is the set of vertices we choose.

T

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

460/575

If we perform the previous dual technique for Set Cover we get
the following:

» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
becomes tight.
» set xy = 1.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

459

Then

Zwvxvzz Z YcXv
v

vV CwveC
=2 2
veSCveC
=>1SnCl-yc
&

where S is the set of vertices we choose.

‘m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

460/575

If we perform the previous dual technique for Set Cover we get
the following:

» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
becomes tight.
» set xy = 1.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

459

Harald Racke

Then

E:WUXU:ZEZ z: YcXy
v

vV CwveC
=> >
veSCveC
=>1SnCl-yc
&

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but
this is unrealistic.

18.2 Feedback Vertex Set for Undirected Graphs
460/575

If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.
» set x, = 1.

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

459

Then

Algorithm 1 FeedbackVertexSet
WyXy = X
1.y <0 %; vXv E: 2: YcXv

vV CwveC

2. x <0 2: 2: Ye

3: while exists cycle C in G do

veS CveC
4 increase yc until there is v € C s.t. Y c.pec Ve = Wy _ Z ISACl-ye
5: Xy = 1 C
6: remove v from G))
. where S is the set of vertices we choose.
7 repeatedly remove vertices of degree 1 from G

If every cycle is short we get a good approximation ratio, but
this is unrealistic.

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 461/575 Harald Racke

Algorithm 1 FeedbackVertexSet
Idea:

cy <0
cx <0
: while exists cycle C in G do

Always choose a short cycle that is not covered. If we always find ;
3
4 increase yc until thereis v € C s.t. Y c.pec Ve = Wy
5
6
7

a cycle of length at most & we get an x-approximation.

Xy = 1
remove v from G
repeatedly remove vertices of degree 1 from G

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 462/575 Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 462/575

Algorithm 1 FeedbackVertexSet

1:
2:
3:
4:

5:
6:
7

vy <0
x <0
while exists cycle C in G do
increase yc until thereis v € C s.t. Y c.pec Ve = Wy
Xy =1
remove v from G
repeatedly remove vertices of degree 1 from G

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

461

Observation:
If we always choose a cycle for which the number of vertices of

degree at least 3 is at most « we get a 2x-approximation.
Idea:

Always choose a short cycle that is not covered. If we always find
a cycle of length at most « we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 463/575 Harald Racke

462

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 2

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=15SnC| <0O(logn) .

m EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke 463/575

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most « we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.

EADS Il 18.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

462

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R* find a shortest path between s and t
w.r.t. edge-weights c.

m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

464/575

Observation:

If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 2

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

Yc>0=>|SNnC|<0O(logn) .

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

463

Primal Dual for Shortest Path
Observation:
If we always choose a cycle for which the number of vertices of

degree at least 3 is at most « we get a 2x-approximation.
Given a graph G = (V, E) with two nodes s,t € V and

edge-weights ¢ : E — R* find a shortest path between s and t

t ed aht Theorem 2
w.r.L edge-weights c. In any graph with no vertices of degree 1, there always exists a
e S c(e)xe cycle .that has at most_ O(.log n) .vertices of degree 3 or more. We
st VSES SussXe = 1 can find such a cycle in linear time.

Ve e E X, € {0,1}

This means we have
Here 6(S) denotes the set of edges with exactly one end-point in

S,and S={ScV:seS§te¢S}. ye>0=>|SNnC| <0Ologn) .

m EADS Il 18.3 Primal Dual for Shortest Path EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 464/575 Harald Racke

463

Primal Dual for Shortest Path Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
The Dual: edge-weights ¢ : E — R* find a shortest path between s and t
w.r.t. edge-weights c.

max 2.5 Ys
5.t :gig 2S:ees(S) VS i g(e) min Secle)xe
s = s.t. VSeS Ze:(s(s) Xe = 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

.
‘m EADS Il 18.3 Primal Dual for Shortest Path EADS II 18.3 Primal Dual for Shortest Path
Harald Racke 465/575 Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vSses ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 465/575

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
s.t. VSesS Ze:(s(s) Xe = 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 464

Primal Dual for Shortest Path

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

466/575

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

465

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

466/575

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

465

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

466/575

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

465

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Harald Racke

18.3 Primal Dual for Shortest Path
466/575

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

465

Primal Dual for Shortest Path

Algorithm 1 PrimalDualShortestPath
1. v <0
2:F <0
3. while there is no s-t path in (V,F) do We can interpret the value ys as the width of a moat surounding
4: Let C be the connected component of (V,F) con- the set S.
taining s
5: Increase yc¢ until there is an edge ¢’ € 6(C) such Each set can have its own moat but all moats must be disjoint.
that >s.0re5(5) Vs = c(e'). |
6: F—Ful{e) An edge cannot be shorter than all the moats that it has to cross.
7: Let P be an s-t path in (V,F)
8: return P
m EADS Il 18.3 Primal Dual for Shortest Path EADS I 18.3 Primal Dual for Shortest Path
Harald Racke 467/575 Harald Racke

Algorithm 1 PrimalDualShortestPath

vy <0

cF<0

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc¢ until there is an edge ¢’ € 6(C) such

that Xg.eres(s) Vs = c(e).

6: F—Fu{e}

: Let P be an s-t path in (V,F)

8: return P

Lemma 3
At each point in time the set F forms a tree.

A W N =

~N

m EADS II 18.3 Primal Dual for Shortest Path EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 468/575 Harald Racke

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 468/575

Algorithm 1 PrimalDualShortestPath

vy <0

cF <0

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc¢ until there is an edge ¢’ € 6(C) such

that Xs.0re5(5) s = c(e’).

6: F—Fu{e}

: Let P be an s-t path in (V,F)

8: return P

A W N =

~N

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

467

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

468/575

Algorithm 1 PrimalDualShortestPath

vy <0

cF<90

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc¢ until there is an edge ¢’ € 6(C) such

that g.eres(s) Vs = c(e).

6: F—Fu{e'}

7: Let P be an s-t path in (V,F)

8: return P

A W N =

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

467

T

EADS Il
Harald Racke

> cle)

ecP

18.3 Primal Dual for Shortest Path

469/575

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

468

dDcle)=> > s

ecP

ecP S:eed(S)

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

469/575

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

468

dee=> > s

ecP ecP S:eed(S)

S:seStgS

S IPASS) s

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

469/575

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

468

If we can show that ys > 0 implies [P N 6(S)| =1 gives

dDcle)=> > s

ecP

by weak duality.

ecP S:eed(S)

= S PSSy .

S:seStgS

Z c(e) = Zyg < OPT

ecP S

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

469/575

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

468

decler=> > s

ecP e€P S:ecd(S)

= > IPn&S)|-ys .
S:seStgS

If we can show that ys > 0 implies [P N 6(S)| =1 gives

Z cle) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

469/575

Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

468

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

470/575

dele=> > s

ecP ecP S:ecd(S)

= > IPns®)|-ys
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

469

If S contains two edges from P then there must exist a subpath

P’ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

T

EADS Il
Harald Racke

18.3 Primal Dual for Shortest Path

470/575

dele=> > s

ecP ecP S:eed(S)

= > IPns®)|-ys
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

> c(e) = > ys < OPT
ecP S

by weak duality.

Hence, we find a shortest path.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

469

If S contains two edges from P then there must exist a subpath dDcl@=> > s
P’ of P that starts and ends with a vertex from S (and all interior ecP ecP S:ecs(S)

vertices are not in S). = > IPn&S)|-ys .
S:seS,t¢S

When we increased ys, S was a connected component of the set

of edges F’ that we had chosen till this point.
If we can show that ys > 0 implies |P n 6(S)| = 1 gives

> c(e) = > ys < OPT
ecP S

by weak duality.

Hence, we find a shortest path.

.
EADS Il 18.3 Primal Dual for Shortest Path

‘m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 470/575 Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 470/575

dDcl@=> > s

ecP e€P S:ecd(S)

= > IPns&S)|-ys .
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

469

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

m EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke 470/575

dDcl@=> > s

ecP e€P S:ecd(S)

= > IPns&S)|-ys .
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

469

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

18.4 Steiner Forest

Harald Racke 471/575

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased vs, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

EADS Il 18.4 Steiner Forest
Harald Racke

470

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2ecle)xe
s.t. VScV:SeS;forsomei Docs5)Xe = 1
VecE xe € {0,1}

18.4 Steiner Forest

Harald Racke 471/575

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased vs, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

EADS Il 18.4 Steiner Forest
Harald Racke

470

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2ecle)xe
s.t. VScV:SeS;forsomei Docs5)Xe = 1
VecE xe € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.

18.4 Steiner Forest

Harald Racke 471/575

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased vs, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

EADS Il 18.4 Steiner Forest
Harald Racke

470

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R" on the edges. Find a

max -3 Vs)
2s5:3ist5e8 Y subset F < E of the edges such that for every i € {1,...,k} there
S S 2secss)Ys < cle)) . .
is a path between s; and t; only using edges in F.
ys = 0
. _ min e cle)xe
The difference to the dual of the shortest path problem is that) .
) : s.t. VScV:SeS;forsomei .55 %Xe = 1
we have many more variables (sets for which we can generate a
Ve € E x. € {0,1}

moat of non-zero width).

Here S; contains all sets S such thats; € S and t; ¢ S.

m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 472/575 Harald Racke

471

Algorithm 1 FirstTry
1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;,t;}| = 1 for some 1.
Increase yc¢ until there is an edge e’ € 6(C) s.t.
2.sesieres(s) VS = Ce’
F <~ Fu{e'}

7: return |UJ; P;

Tﬂ ﬂ:‘ EADS Il
Harald Racke

18.4 Steiner Forest

473/575

max 2S:3ist.Ses; VS
s.t. VeekE Ssecsis) Vs = cle)
ys = 0

The difference to the dual of the shortest path problem is that
we have many more variables (sets for which we can generate a
moat of non-zero width).

EADS Il 18.4 Steiner Forest
Harald Racke 472

> cle)

ecF Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

Increase yc¢ until there is an edge e’ € 6(C) s.t.

2.seseres(s) Vs = Ce'
F—Fuf{e}

7: return |J; P;

T ﬂ ﬂ :‘ EADS Il 18.4 Steiner Forest EADS Il
Harald Racke 474/575 Harald Racke

18.4 Steiner Forest

473

deley=> > s

ecF ecF S:ees(S) Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase yc until there is an edge e’ € 6(C) s.t
ZSeSi:e’eé(S) Vs =Ce
F—Fu{e'}

7: return |J; P;

m EADS Il 18.4 Steiner Forest EADS Il
Harald Racke 474/575 Harald Racke

18.4 Steiner Forest

473

deley=> > m—Z\é(smF\ Vs .

ecF ecF S:ees(S) Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase yc until there is an edge e’ € 6(C) s.t
ZSeSi:e’eé(S) Vs =Ce
F—Fu{e'}

7: return |J; P;

m EADS Il 18.4 Steiner Forest EADS Il
Harald Racke 474/575 Harald Racke

18.4 Steiner Forest

473

deley=> > m—Z\é(smF\ Vs .

ecF ecF S:ees(S) Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase yc until there is an edge e’ € 6(C) s.t
ZSeSi:e’eé(S) Vs =Ce
F—Fu{e'}

7: return |J; P;

m EADS Il 18.4 Steiner Forest EADS Il
Harald Racke 474/575 Harald Racke

18.4 Steiner Forest

473

deley=> > ys—ZW(S)ﬂF\')’S-

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices v, vy,..., Uk.

m EADS Il 18.4 Steiner Forest
Harald Racke 474/575

Algorithm 1 FirstTry

1. v <0

22 F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc until there is an edge e’ € 6(C) s.t
Xsesiees(s) Vs = Ce

6: F—Fu{e}

7: return |J; P;

EADS Il 18.4 Steiner Forest

Harald Racke

473

deley=> > ys—ZW(S)ﬂF\')’S-

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices v, vy,..., Uk.

» The i-th pair is vg-v;.

m EADS Il 18.4 Steiner Forest
Harald Racke 474/575

Algorithm 1 FirstTry

1. v <0

22 F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc until there is an edge e’ € 6(C) s.t
Xsesiees(s) Vs = Ce

6: F—Fu{e}

7: return |J; P;

EADS Il 18.4 Steiner Forest

Harald Racke

473

deley=> > ys—ZW(S)ﬂF\')’S-

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices v, vy,..., Uk.
» The i-th pair is vg-v;.

» The first component C could be {vg}.

m EADS Il 18.4 Steiner Forest
Harald Racke 474/575

Algorithm 1 FirstTry

1. v <0

22 F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc until there is an edge e’ € 6(C) s.t
Xsesiees(s) Vs = Ce

6: F—Fu{e}

7: return |J; P;

EADS Il 18.4 Steiner Forest

Harald Racke

473

docle)y=> > ys=>18(8)NF|-ys.
S

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices v, vy,..., Uk.

v

The i-th pair is vo-v;.

v

The first component C could be {vg}.

v

We only set y{y,1 = 1. All other dual variables stay 0.

m EADS Il 18.4 Steiner Forest
Harald Racke 474/575

Algorithm 1 FirstTry

1. v <0

2. F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc¢ until there is an edge e’ € 6(C) s.t.
ZSeSi:e’eé(S) Vs =Ce

6: F—Fu{e}

7: return |J; P;

EADS Il 18.4 Steiner Forest
Harald Racke

473

docle)y=> > ys=>18(8)NF|-ys.
S

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices v, vy,..., Uk.

v

The i-th pair is vo-v;.

v

The first component C could be {vg}.

v

We only set y{y,1 = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.

m EADS Il 18.4 Steiner Forest
Harald Racke 474/575

Algorithm 1 FirstTry

1. v <0

2. F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc¢ until there is an edge e’ € 6(C) s.t.
zSeSi:e’eé(S) Vs =Ce

6: F—Fu{e'}

7: return |J; P;

EADS Il 18.4 Steiner Forest

Harald Racke

473

deley=> > y5_2\5<5m1:\ Vs .

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

>

>

>

Take a complete graph on k + 1 vertices vg, vy,..., Uk.
The i-th pair is vo-v;.

The first component C could be {vg}.

We only set y{y,1 = 1. All other dual variables stay 0.
The final set F contains all edges {vg,v;},i=1,...,k.
Yiver > 0 but [6({vo}) N F| = k.

m EADS Il 18.4 Steiner Forest
Harald Racke 474/575

Algorithm 1 FirstTry

1. v <0

2. F <0

3: while not all s;-t; pairs connected in F do

4 Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc until there is an edge e’ € 6(C) s.t
2.sesie'es(s) Vs = Ce’

6: F—Fuf{e}

7: return |J; P;

EADS Il 18.4 Steiner Forest
Harald Racke

473

Algorithm 1 SecondTry

—_ -

1
2
3:
4

vl

S 2 P®JF @

Yy <0, F<0;¢ <0
: while not all s;-t; pairs connected in F do
{—4+1
Let € be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some i.
Increase y¢ for all C € € uniformly until for some edge
ep € 6(C'), C" € Cs.t. Yo es(5) Vs = Cey
F — Fu {ep}
F' — F
for k — £ downto 1 do // reverse deletion
if F/ — ey is feasible solution then
remove ey from F’
return F’

| 2

>

>

T ﬂ ﬂ :‘ EADS Il
Harald Racke

18.4 Steiner Forest

EADS II
Harald Racke

475/575

dcele)=> > ys—Zlé(S)mFl ys -

ecF ecF S:eed(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in
good shape.

However, this is not true:

Take a complete graph on k + 1 vertices vg, vy,..., Uk.
The i-th pair is vg-v;.

The first component C could be {vg}.

We only set yv{y,1 = 1. All other dual variables stay 0.
The final set F contains all edges {vg,v;},i=1,...,k.
Yiver > 0 but [6({vo}) N F| = k.

18.4 Steiner Forest

474

Algorithm 1 SecondTry

1:

2

3:

The reverse deletion step is not strictly necessary this way. It <
would also be sufficient to simply delete all unnecessary edges

in any order. =

6:

7

8

9:

10:

11:

y<0;F<0;¢-0

: while not all s;-t; pairs connected in F do

£ —L4+1

Let € be set of all connected components C of (V,F)
such that |C n {s;, t;}| = 1 for some i.

Increase ¢ for all C € € uniformly until for some edge
e# € 5(C,)1 C’ E C s.t. 25:6#65(5) yS = CEy

: F — F U {ep}

: F' < F

: for k — £ downto 1 do // reverse deletion
if F/ — ey is feasible solution then
remove ey from F’
return F’

T ﬂ ﬂ :‘ EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 476/575 Harald Racke

475

Example

O
53 The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.
O
t
051 052 2
¢ (6]
t o

‘m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 477/575 Harald Racke

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

o ©

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

L) @

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Example

T

EADS Il
Harald Racke

18.4 Steiner Forest

477/575

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

EADS Il 18.4 Steiner Forest
Harald Racke

476

Lemma 4
For any C in any iteration of the algorithm

D> 18(C)nF'| <2(C|
ceC

This means that the number of times a moat from C is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest
Harald Racke 478/575

Example

EADS Il
Harald Racke

18.4 Steiner Forest

477

2, Ce

ecF’
Lemma 4

For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 479/575 Harald Racke

478

2. =2 2 s

ecF’ ecF’ S:eed(S)
Lemma 4

For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 479/575 Harald Racke

478

Sce= > > ws=DIF &S ys
ecF’ ecF’ S:eed(S) S
Lemma 4

For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 479/575 Harald Racke

478

Sce= > > ys=DIF 8- s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

Lemma 4
For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest
Harald Racke

EADS Il 18.4 Steiner Forest
479/575 Harald Racke

478

D= > ys—Z|Fﬁ5(5)| Vs .

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFFns0)]
ceC

and the increase of the right hand side is 2¢|C|.

Lemma 4
For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest
Harald Racke

EADS Il 18.4 Steiner Forest
479/575 Harald Racke

478

Dce=> > ys=2IFn&S)-ys .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys<2> ys
S S

» In the i-th iteration the increase of the left-hand side is

€ > IFFns0)]
ceC

and the increase of the right hand side is 2¢|C|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

18.4 Steiner Forest

Harald Racke 479/575

Lemma 4
For any C in any iteration of the algorithm

> 16(C) N F'| < 2IC]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

EADS Il 18.4 Steiner Forest
Harald Racke

478

Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]

ceC

T

EADS Il
Harald Racke

18.4 Steiner Forest

480/575

dDce=D> D> ys=>IFn&S)ys .

ecF’ ecF’' S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

e > IFns0)l
ceC
and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

EADS Il 18.4 Steiner Forest
Harald Racke

479

Lemma 5
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

m EADS Il 18.4 Steiner Forest
Harald Racke 480/575

Doce=> > w—ZWm&9|%.

ecF’ ecF’ S:ees(S)

We want to show that

DIF NS -ys<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

€ Z [F' né(C)l
ceC
and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

EADS Il 18.4 Steiner Forest
Harald Racke

479

Lemma 5
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

m EADS Il 18.4 Steiner Forest
Harald Racke 480/575

Doce=> > w—ZWm&9|%.

ecF’ ecF’ S:ees(S)

We want to show that

DIF NS -ys<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

e> IFné(0)
ceC

and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

EADS Il 18.4 Steiner Forest
Harald Racke

479

Lemma 5
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

> Let H=F —F;.

m EADS Il 18.4 Steiner Forest
Harald Racke 480/575

Doce=> > w—ZWm&9|%.

ecF’ ecF’ S:ees(S)

We want to show that

DIF NS -ys<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

e> IFné(0)
ceC

and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

EADS Il 18.4 Steiner Forest
Harald Racke

479

Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

>

Harald Racke

At any point during the algorithm the set of edges forms a
forest (why?).

Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

Let H = F/ — F;.

All edges in H are necessary for the solution.

18.4 Steiner Forest
480/575

Doce=> > w—ZWm&9|%.

ecF’ ecF’ S:ees(S)

We want to show that

DIF NS -ys<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

e> IFné(0)
ceC

and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

EADS Il 18.4 Steiner Forest
Harald Racke

479

T

» Contract all edges in F; into single vertices V'.

EADS Il 18.4 Steiner Forest
Harald Racke

481/575

Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2|¢]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

» Let H = F' — F;.

» All edges in H are necessary for the solution.

EADS Il 18.4 Steiner Forest
Harald Racke

480

T

» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

EADS 1l 18.4 Steiner Forest
Harald Racke

481/575

Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2|¢]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

» Let H = F' — F;.

» All edges in H are necessary for the solution.

EADS Il 18.4 Steiner Forest
Harald Racke

480

T

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

EADS Il 18.4 Steiner Forest
Harald Racke

481/575

Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2|¢]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

» Let H = F' — F;.

» All edges in H are necessary for the solution.

EADS Il 18.4 Steiner Forest
Harald Racke

480

Lemma 5

> Contract all edges in F; into single vertices V. For any set of connected components C in any iteration of the

algorithm
» We can consider the forest H on the set of vertices V'.

D> 18(C)nF'| <2|C]
> Let deg(v) be the degree of a vertex v € V' within this forest. cet

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue

Proof:
vertices (with non-zero degree) and R the set of red vertices)

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

» Let H = F' — F;.

» All edges in H are necessary for the solution.

m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 481/575 Harald Racke

Lemma 5

> Contract all edges in F; into single vertices V’ For any set of connected components C in any iteration of the
i .
algorithm
» We can consider the forest H on the set of vertices V.

D> 18(C)nF'| <2|C]
> Let deg(v) be the degree of a vertex v € V' within this forest. cet

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue

Proof:
vertices (with non-zero degree) and R the set of red vertices)

» At any point during the algorithm the set of edges forms a
forest (why?).
> deg(v) = > |8(C)NF| ; 2|C| = 2|R| » Fix iteration i. Let F; be the set of edges in F at the
veR cet beginning of the iteration.
» Let H = F' — F;.

» We have

» All edges in H are necessary for the solution.

m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 481/575 Harald Racke

» Suppose that no node in B has degree one.
» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€

‘m EADS Il 18.4 Steiner Forest EADS II 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€

‘m EADS Il 18.4 Steiner Forest EADS II 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

> deg(v)

VeR > Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€

‘m EADS Il 18.4 Steiner Forest EADS II 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

D, deg(v) = > deg(v)— > deg(v)

VeR VERUB veB > Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€

‘m EADS Il 18.4 Steiner Forest EADS II 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R 8 ve%uB s v%B 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
< 2(|R| + |B|) — 2|B| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€

‘m EADS Il 18.4 Steiner Forest EADS II 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R 8 ve%uB s v%B 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
< 2(|R| + |B|) — 2|B| = 2|R]| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€

‘m EADS Il 18.4 Steiner Forest EADS II 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%B 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|

VER ceC

m EADS I 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%g 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have
» Suppose not. The single edge connecting b € B comes from ?
H, and, hence, is necessary. > deg(v) = > |8(C) nF'| <2|C| = 2|R]|
VER ceC

m EADS I 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%g 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have

» Suppose not. The single edge connecting b € B comes from -

H, and, hence, is necessary. Z deg(v) = Z |6(C) nF'| <2|€| = 2|R|
» But this means that the cluster corresponding to b must veR cec

separate a source-target pair.

m EADS I 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%g 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have
» Suppose not. The single edge connecting b € B comes from -
H, and, hence, is necessary. > deg(v) = > |8(C)NF'| <2|C| =2|R|
» But this means that the cluster corresponding to b must veR cec
separate a source-target pair.
» But then it must be a red node.

m EADS Il 18.4 Steiner Forest EADS Il 18.4 Steiner Forest
Harald Racke 482/575 Harald Racke

481

	Primal Dual Techniques
	Primal Dual Revisited
	Feedback Vertex Set for Undirected Graphs
	Primal Dual for Shortest Path
	Steiner Forest

