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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix;
s.t. YuelU Zi:ueSi x;i = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Dueu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu = 0
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
> ldentify an element e that is not covered in current primal
integral solution.
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Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
> Increase dual variable y, until a dual constraint becomes

tight (maybe increase by 0!).
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Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.

> Increase dual variable y, until a dual constraint becomes
tight (maybe increase by 0!).

» If this is the constraint for set S; set x; = 1 (add this set to
your solution).
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Repetition: Primal Dual for Set Cover

Analysis:
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Start with x = 0 (integral primal solution that may be
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» ldentify an element e that is not covered in current primal

integral solution.
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your solution).
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Repetition: Primal Dual for Set Cover

Analysis:
» For every set §; with x; = 1 we have

D Ve =wj

GESJ'
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eesi
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eesi

If we would also fulfill dual slackness conditions

YVe>0= > xj=1

Jees;

then the solution would be optimal!!l
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Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.
We don’t fulfill these constraint but we fulfill an approximate

’ This means
version:

Xj>03 Zye:wj

eESj

If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Jie€s;

then the solution would be optimal!!!
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We don’t fulfill these constraint but we fulfill an approximate

version:

This is sufficient to show that the solution is an
f-approximation.

Ye>0=1< > xj<f

Jees;
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Suppose we have a primal/dual pair

min 2 €% ax 2: b We don’t fulfill th traint but we fulfill imat
st. Vi Siagx; = b st. Vi Siaiyi < ¢ e _on u ese constraint but we fu an approximate
Vv j xj = 0 Vi yi = 0 version:
Ye>0=>1< > x;=f
J:e€s;
This is sufficient to show that the solution is an
f-approximation.
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1 This is sufficient to show that the solution is an
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Then

2. X
J
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Suppose we have a primal/dual pair
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Then

right hand side of j-th

dual constraint

J
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0

for vertex v € V.
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0

for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.
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We can encode this as an instance of Set Cover

T

» Each vertex can be viewed as a set that contains some

cycles.
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.
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We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some
cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

EADS Il
Harald Racke

18.2 Feedback Vertex Set for Undirected Graphs

456



We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.

» The O(logn)-approximation for Set Cover does not help us
to get a good solution.
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.
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Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.
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Let € denote the set of all cycles (where a cycle is identified by

its set of vertices)

Primal Relaxation:

min D WyXy
st. VCel€ D,ccxy = 1
Yv xy = 0
Dual Formulation:
max 2.cec e
st. YveV YcpecyYe =< wy
vC yc = 0
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We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.
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If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

Let € denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

T
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min Dv WyXy

st. VCe€ Dicexv = 1

Yv Xy =
Dual Formulation:
max 2.cecYC
st. YVEV DcypecYe < wy
vC ye = 0
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If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
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If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.
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If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase y¢ until dual constraint for some vertex v

becomes tight.
» set x, = 1.
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Then

z Wy Xy
v
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If we perform the previous dual technique for Set Cover we get
the following:

» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
becomes tight.
» set xy = 1.
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If we perform the previous dual technique for Set Cover we get
the following:
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» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
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Then
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vV CwveC

>, > Yy

veSCveC

where S is the set of vertices we choose.
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where S is the set of vertices we choose.
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the following:

» Start with x =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v
becomes tight.
» set xy = 1.
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Then

E:WUXU:ZEZ z: YcXy
v

vV CwveC
=> >
veSCveC
=>1SnCl-yc
&

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but
this is unrealistic.
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If we perform the previous dual technique for Set Cover we get
the following:
» Start with x =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.
» set x, = 1.
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Then

Algorithm 1 FeedbackVertexSet
WyXy = X
1.y <0 %; vXv E: 2: YcXv

vV CwveC

2. x <0 2: 2: Ye

3: while exists cycle C in G do

veS CveC
4 increase yc until there is v € C s.t. Y c.pec Ve = Wy _ Z ISACl-ye
5: Xy = 1 C
6: remove v from G ) )
. where S is the set of vertices we choose.
7 repeatedly remove vertices of degree 1 from G

If every cycle is short we get a good approximation ratio, but
this is unrealistic.
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Algorithm 1 FeedbackVertexSet
Idea:

cy <0
cx <0
: while exists cycle C in G do

Always choose a short cycle that is not covered. If we always find ;
3
4 increase yc until thereis v € C s.t. Y c.pec Ve = Wy
5
6
7

a cycle of length at most & we get an x-approximation.

Xy = 1
remove v from G
repeatedly remove vertices of degree 1 from G
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.
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Algorithm 1 FeedbackVertexSet

1:
2:
3:
4:

5:
6:
7

vy <0
x <0
while exists cycle C in G do
increase yc until thereis v € C s.t. Y c.pec Ve = Wy
Xy =1
remove v from G
repeatedly remove vertices of degree 1 from G
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Observation:
If we always choose a cycle for which the number of vertices of

degree at least 3 is at most « we get a 2x-approximation.
Idea:

Always choose a short cycle that is not covered. If we always find
a cycle of length at most « we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.
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Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 2

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=15SnC| <0O(logn) .
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most « we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R* find a shortest path between s and t
w.r.t. edge-weights c.
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Observation:

If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 2

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

Yc>0=>|SNnC|<0O(logn) .
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Primal Dual for Shortest Path
Observation:
If we always choose a cycle for which the number of vertices of

degree at least 3 is at most « we get a 2x-approximation.
Given a graph G = (V, E) with two nodes s,t € V and

edge-weights ¢ : E — R* find a shortest path between s and t

t ed aht Theorem 2
w.r.L edge-weights c. In any graph with no vertices of degree 1, there always exists a
e S c(e)xe cycle .that has at most_ O(.log n) .vertices of degree 3 or more. We
st VSES SussXe = 1 can find such a cycle in linear time.

Ve e E X, € {0,1}

This means we have
Here 6(S) denotes the set of edges with exactly one end-point in

S,and S={ScV:seS§te¢S}. ye>0=>|SNnC| <0Ologn) .
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Primal Dual for Shortest Path Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
The Dual: edge-weights ¢ : E — R* find a shortest path between s and t
w.r.t. edge-weights c.

max 2.5 Ys
5.t :gig 2S:ees(S) VS i g(e) min Secle)xe
s = s.t. VSeS Ze:(s(s) Xe = 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

.
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vSses ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
s.t. VSesS Ze:(s(s) Xe = 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.
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Primal Dual for Shortest Path
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

Harald Racke
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgeesis)Vs =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,té¢S}.
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Primal Dual for Shortest Path

Algorithm 1 PrimalDualShortestPath
1. v <0
2:F <0
3. while there is no s-t path in (V,F) do We can interpret the value ys as the width of a moat surounding
4: Let C be the connected component of (V,F) con- the set S.
taining s
5: Increase yc¢ until there is an edge ¢’ € 6(C) such Each set can have its own moat but all moats must be disjoint.
that >s.0re5(5) Vs = c(e'). |
6: F—Ful{e) An edge cannot be shorter than all the moats that it has to cross.
7: Let P be an s-t path in (V,F)
8: return P
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Algorithm 1 PrimalDualShortestPath

vy <0

cF<0

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc¢ until there is an edge ¢’ € 6(C) such

that Xg.eres(s) Vs = c(e).

6: F—Fu{e}

: Let P be an s-t path in (V,F)

8: return P

Lemma 3
At each point in time the set F forms a tree.

A W N =

~N
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
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Algorithm 1 PrimalDualShortestPath

vy <0

cF <0

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc¢ until there is an edge ¢’ € 6(C) such

that Xs.0re5(5) s = c(e’).

6: F—Fu{e}

: Let P be an s-t path in (V,F)

8: return P

A W N =

~N
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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Algorithm 1 PrimalDualShortestPath

vy <0

cF<90

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc¢ until there is an edge ¢’ € 6(C) such

that g.eres(s) Vs = c(e).

6: F—Fu{e'}

7: Let P be an s-t path in (V,F)

8: return P

A W N =
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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dDcle)=> > s

ecP

ecP S:eed(S)
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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dee=> > s

ecP ecP S:eed(S)

S:seStgS

S IPASS) s

T
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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If we can show that ys > 0 implies [P N 6(S)| =1 gives

dDcle)=> > s

ecP

by weak duality.

ecP S:eed(S)

= S PSSy .

S:seStgS

Z c(e) = Zyg < OPT

ecP S

T
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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decler=> > s

ecP e€P S:ecd(S)

= > IPn&S)|-ys .
S:seStgS

If we can show that ys > 0 implies [P N 6(S)| =1 gives

Z cle) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.
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Lemma 3
At each point in time the set F forms a tree.

Proof:

» In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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dele=> > s

ecP ecP S:ecd(S)

= > IPns®)|-ys
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.
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If S contains two edges from P then there must exist a subpath

P’ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).
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dele=> > s

ecP ecP S:eed(S)

= > IPns®)|-ys
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

> c(e) = > ys < OPT
ecP S

by weak duality.

Hence, we find a shortest path.

EADS Il 18.3 Primal Dual for Shortest Path
Harald Racke

469



If S contains two edges from P then there must exist a subpath dDcl@=> > s
P’ of P that starts and ends with a vertex from S (and all interior ecP ecP S:ecs(S)

vertices are not in S). = > IPn&S)|-ys .
S:seS,t¢S

When we increased ys, S was a connected component of the set

of edges F’ that we had chosen till this point.
If we can show that ys > 0 implies |P n 6(S)| = 1 gives

> c(e) = > ys < OPT
ecP S

by weak duality.

Hence, we find a shortest path.

.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.
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dDcl@=> > s

ecP e€P S:ecd(S)

= > IPns&S)|-ys .
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.
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dDcl@=> > s

ecP e€P S:ecd(S)

= > IPns&S)|-ys .
S:seStgS

If we can show that ys > 0 implies |P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.
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Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

18.4 Steiner Forest

Harald Racke 471/575

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased vs, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.
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Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2ecle)xe
s.t. VScV:SeS;forsomei Docs5)Xe = 1
VecE xe € {0,1}
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased vs, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.
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Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2ecle)xe
s.t. VScV:SeS;forsomei Docs5)Xe = 1
VecE xe € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased vs, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.
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Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R" on the edges. Find a

max -3 Vs )
2s5:3ist5e8 Y subset F < E of the edges such that for every i € {1,...,k} there
S S 2secss)Ys < cle) ) . .
is a path between s; and t; only using edges in F.
ys = 0
. _ min e cle)xe
The difference to the dual of the shortest path problem is that ) .
) : s.t. VScV:SeS;forsomei .55 %Xe = 1
we have many more variables (sets for which we can generate a
Ve € E x. € {0,1}

moat of non-zero width).

Here S; contains all sets S such thats; € S and t; ¢ S.
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Algorithm 1 FirstTry
1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;,t;}| = 1 for some 1.
Increase yc¢ until there is an edge e’ € 6(C) s.t.
2.sesieres(s) VS = Ce’
F <~ Fu{e'}

7: return |UJ; P;

Tﬂ ﬂ:‘ EADS Il
Harald Racke
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max 2S:3ist.Ses; VS
s.t. VeekE Ssecsis) Vs = cle)
ys = 0

The difference to the dual of the shortest path problem is that
we have many more variables (sets for which we can generate a
moat of non-zero width).
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> cle)

ecF Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

Increase yc¢ until there is an edge e’ € 6(C) s.t.

2.seseres(s) Vs = Ce'
F—Fuf{e}

7: return |J; P;

T ﬂ ﬂ :‘ EADS Il 18.4 Steiner Forest EADS Il
Harald Racke 474/575 Harald Racke

18.4 Steiner Forest

473



deley=> > s

ecF ecF S:ees(S) Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase yc until there is an edge e’ € 6(C) s.t
ZSeSi:e’eé(S) Vs =Ce
F—Fu{e'}

7: return |J; P;
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deley=> > m—Z\é(smF\ Vs .

ecF ecF S:ees(S) Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase yc until there is an edge e’ € 6(C) s.t
ZSeSi:e’eé(S) Vs =Ce
F—Fu{e'}

7: return |J; P;
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deley=> > m—Z\é(smF\ Vs .

ecF ecF S:ees(S) Algorithm 1 FirstTry

1. v <0
2. F <0
3:
4

while not all s;-t; pairs connected in F do
Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase yc until there is an edge e’ € 6(C) s.t
ZSeSi:e’eé(S) Vs =Ce
F—Fu{e'}

7: return |J; P;
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deley=> > ys—ZW(S)ﬂF\')’S-

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices v, vy,..., Uk.
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1. v <0

22 F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc until there is an edge e’ € 6(C) s.t
Xsesiees(s) Vs = Ce

6: F—Fu{e}

7: return |J; P;
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» The i-th pair is vg-v;.
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If we show that ys > 0 implies that [6(S) N F| < o« we are in
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However, this is not true:
» Take a complete graph on k + 1 vertices v, vy,..., Uk.
» The i-th pair is vg-v;.
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docle)y=> > ys=>18(8)NF|-ys.
S

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices v, vy,..., Uk.

v

The i-th pair is vo-v;.

v

The first component C could be {vg}.

v

We only set y{y,1 = 1. All other dual variables stay 0.
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If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices v, vy,..., Uk.

v

The i-th pair is vo-v;.

v

The first component C could be {vg}.

v

We only set y{y,1 = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
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deley=> > y5_2\5<5m1:\ Vs .

ecF ecF S:ecd(S)

If we show that ys > 0 implies that [6(S) N F| < o« we are in
good shape.

However, this is not true:

>

>

>

Take a complete graph on k + 1 vertices vg, vy,..., Uk.
The i-th pair is vo-v;.

The first component C could be {vg}.

We only set y{y,1 = 1. All other dual variables stay 0.
The final set F contains all edges {vg,v;},i=1,...,k.
Yiver > 0 but [6({vo}) N F| = k.
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Algorithm 1 FirstTry

1. v <0

2. F <0

3: while not all s;-t; pairs connected in F do

4 Let C be some connected component of (V,F)
such that |C N {s;, t;}| = 1 for some 1.

5: Increase yc until there is an edge e’ € 6(C) s.t
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Algorithm 1 SecondTry

—_ -

1
2
3:
4

vl

S 2 P®JF @

Yy <0, F<0;¢ <0
: while not all s;-t; pairs connected in F do
{—4+1
Let € be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some i.
Increase y¢ for all C € € uniformly until for some edge
ep € 6(C'), C" € Cs.t. Yo es(5) Vs = Cey
F — Fu {ep}
F' — F
for k — £ downto 1 do // reverse deletion
if F/ — ey is feasible solution then
remove ey from F’
return F’

| 2

>

>
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dcele)=> > ys—Zlé(S)mFl ys -

ecF ecF S:eed(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in
good shape.

However, this is not true:

Take a complete graph on k + 1 vertices vg, vy,..., Uk.
The i-th pair is vg-v;.

The first component C could be {vg}.

We only set yv{y,1 = 1. All other dual variables stay 0.
The final set F contains all edges {vg,v;},i=1,...,k.
Yiver > 0 but [6({vo}) N F| = k.
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Algorithm 1 SecondTry

1:

2

3:

The reverse deletion step is not strictly necessary this way. It <
would also be sufficient to simply delete all unnecessary edges

in any order. =

6:

7

8

9:

10:

11:

y<0;F<0;¢-0

: while not all s;-t; pairs connected in F do

£ —L4+1

Let € be set of all connected components C of (V,F)
such that |C n {s;, t;}| = 1 for some i.

Increase ¢ for all C € € uniformly until for some edge
e# € 5(C,)1 C’ E C s.t. 25:6#65(5) yS = CEy

: F — F U {ep}

: F' < F

: for k — £ downto 1 do // reverse deletion
if F/ — ey is feasible solution then
remove ey from F’
return F’
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Example

O
53 The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.
O
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Lemma 4
For any C in any iteration of the algorithm

D> 18(C)nF'| <2(C|
ceC

This means that the number of times a moat from C is crossed in
the final solution is at most twice the number of moats.

Proof: later...
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2, Ce

ecF’
Lemma 4

For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...
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2. =2 2 s

ecF’ ecF’ S:eed(S)
Lemma 4

For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...
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Sce= > > ws=DIF &S ys
ecF’ ecF’ S:eed(S) S
Lemma 4

For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...
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Sce= > > ys=DIF 8- s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

Lemma 4
For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...
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D= > ys—Z|Fﬁ5(5)| Vs .

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFFns0)]
ceC

and the increase of the right hand side is 2¢|C|.
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For any C in any iteration of the algorithm

> 16(C) nF'| < 2|¢]
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the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 18.4 Steiner Forest
Harald Racke

EADS Il 18.4 Steiner Forest
479/575 Harald Racke

478



Dce=> > ys=2IFn&S)-ys .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys<2> ys
S S

» In the i-th iteration the increase of the left-hand side is

€ > IFFns0)]
ceC

and the increase of the right hand side is 2¢|C|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.
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Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]

ceC
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dDce=D> D> ys=>IFn&S)ys .

ecF’ ecF’' S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

e > IFns0)l
ceC
and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.
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Lemma 5
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).
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Doce=> > w—ZWm&9|%.

ecF’ ecF’ S:ees(S)

We want to show that

DIF NS -ys<2> ys
S S

» |In the i-th iteration the increase of the left-hand side is

€ Z [F' né(C)l
ceC
and the increase of the right hand side is 2¢|C]|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.
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Lemma 5
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.
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Lemma 5
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

> Let H=F —F;.
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Lemma 5

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

>

Harald Racke

At any point during the algorithm the set of edges forms a
forest (why?).

Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

Let H = F/ — F;.

All edges in H are necessary for the solution.
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» Contract all edges in F; into single vertices V'.
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For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2|¢]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

» Let H = F' — F;.

» All edges in H are necessary for the solution.
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» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.
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» At any point during the algorithm the set of edges forms a
forest (why?).
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» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.
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Lemma 5

> Contract all edges in F; into single vertices V. For any set of connected components C in any iteration of the

algorithm
» We can consider the forest H on the set of vertices V'.

D> 18(C)nF'| <2|C]
> Let deg(v) be the degree of a vertex v € V' within this forest. cet

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue

Proof:
vertices (with non-zero degree) and R the set of red vertices)

» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

» Let H = F' — F;.

» All edges in H are necessary for the solution.
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Lemma 5

> Contract all edges in F; into single vertices V’ For any set of connected components C in any iteration of the
i .
algorithm
» We can consider the forest H on the set of vertices V.

D> 18(C)nF'| <2|C]
> Let deg(v) be the degree of a vertex v € V' within this forest. cet

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue

Proof:
vertices (with non-zero degree) and R the set of red vertices)

» At any point during the algorithm the set of edges forms a
forest (why?).
> deg(v) = > |8(C)NF| ; 2|C| = 2|R| » Fix iteration i. Let F; be the set of edges in F at the
veR cet beginning of the iteration.
» Let H = F' — F;.

» We have

» All edges in H are necessary for the solution.
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» Suppose that no node in B has degree one.
» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€
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VeR > Let deg(v) be the degree of a vertex v € V' within this forest.
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vertices (with non-zero degree) and R the set of red vertices)
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

D, deg(v) = > deg(v)— > deg(v)

VeR VERUB veB > Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R 8 ve%uB s v%B 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
< 2(|R| + |B|) — 2|B| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R 8 ve%uB s v%B 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
< 2(|R| + |B|) — 2|B| = 2|R]| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

» We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|
vVER ce€
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%B 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2|R|

VER ceC
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%g 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have
» Suppose not. The single edge connecting b € B comes from ?
H, and, hence, is necessary. > deg(v) = > |8(C) nF'| <2|C| = 2|R]|
VER ceC
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%g 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have

» Suppose not. The single edge connecting b € B comes from -

H, and, hence, is necessary. Z deg(v) = Z |6(C) nF'| <2|€| = 2|R|
» But this means that the cluster corresponding to b must veR cec

separate a source-target pair.
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» Suppose that no node in B has degree one.

» Contract all edges in F; into single vertices V'.
» Then 9 ! 9

» We can consider the forest H on the set of vertices V'.

deg(v) = deg(v) — deg(v
v%R ¢ ve%uB s v%g 8t > Let deg(v) be the degree of a vertex v € V' within this forest.
<2(|R| + |B]) — 2|B| = 2|R| » Color a vertex v € V' red if it corresponds to a component from

€ (an active component). Otw. color it blue. (Let B the set of blue

. vertices (with non-zero degree) and R the set of red vertices)
» Every blue vertex with non-zero degree must have degree at

least two. » We have
» Suppose not. The single edge connecting b € B comes from -
H, and, hence, is necessary. > deg(v) = > |8(C)NF'| <2|C| =2|R|
» But this means that the cluster corresponding to b must veR cec
separate a source-target pair.
» But then it must be a red node.
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