Das Ziel eines Proseminar ist einerseits die vertieften inhaltlichen Auseinandersetzung mit einem Thema. Andererseits dient ein Proseminar aber auch dazu, die Fähigkeiten im Ausarbeiten und Halten von Vorträgen zu verbessern, und wir werden versuchen, Sie dabei zu unterstützen. Dazu gehören aus aktuellem Anlass auch die Grundlagen wissenschaftlichen Arbeitens, beispielsweise das korrekte Zitieren.
Das Visualisieren struktureller Information ist für das Verständnis komplexer Zusammenhänge von entscheidender Bedeutung. Beispiele in der Informatik sind das Visualisieren von Datenbankmodellen in CASE-Tools, eine graphische Darstellung der Zustandsübergänge bei Automaten oder das Data-Mining. Graphen sind ein ideales Hilfsmittel, um strukturelle Information abstrakt zu modellieren. Ein Graph besteht aus einer Menge von Knoten und einer Menge von Kanten. Eine Kante verläuft dabei zwischen zwei Knoten und beschreibt eine Beziehung zwischen diesen Knoten.
Eine Zeichnung eines Graphen ist eine Darstellung dieser Beziehungen als Diagramm. Sie ordnet den Knoten Symbole (etwa Kreise oder Rechtecke) und Koordinaten (meist in der euklidischen Ebene) zu. Die Kanten werden durch Kurven zwischen den zugehörigen Knotensymbolen dargestellt. Beispiele für erlaubte Kurven sind Polygonzüge, orthogonale Polygonzüge oder Geradensegmente.
Graphenzeichnungen sollen vor allem zwei Anforderungen genügen: Sie sollen "schön" sein, aber auch die strukturellen Zusammenhänge der zugrundeliegenden Daten herausarbeiten. Es ist klar, dass manche Zeichnungen die enthaltene Information besser zum Ausdruck bringen als andere. Deshalb werden ästhetische Kriterien festgelegt, welche die Lesbarkeit von Graphen erhöhen sollen. Man kann etwa verlangen, dass Symmetrien oder Cluster in einem Graphen sichtbar werden oder dass die Anzahl der Schnittpunkte von Kanten möglichst klein ist. Diese Kriterien sind jedoch subjektiv und kontextabhängig. Sind die Anforderungen an die Darstellung einer Klasse von Graphen einmal festgelegt, dann versucht man, effiziente Algorithmen zu entwickeln, die möglichst gute Zeichnungen automatisch liefern.
In diesem Proseminar sollen in den einzelnen Vorträgen grundlegende Ergebnisse aus diesem aktiven Forschungsgebiet vorgestellt werden. Es werden zuerst Algorithmen für das Zeichnen von Bäumen untersucht. Dann wird der Frage nachgegangen, wann sich ein Graph ohne Überschneidungen von Kanten zeichnen lässt. Für den Fall, dass letzteres nicht möglich ist, werden Algorithmen angewendet, die die Zahl der Kantenkreuzungen zumindest klein halten. Neben einigen weiteren Graphklassen und -algorithmen werden zudem aktuelle Anwendungen vorgestellt.